Appendix – Optimal Redistributive Tax and Education Policies in General Equilibrium

Bas Jacobs

Erasmus University Rotterdam, Tinbergen Institute, Netspar and CESifo*

International Tax and Public Finance January 22, 2012

Appendix

For later reference, we provide the main model equations, i.e., the utility function, the production function for human capital, the household budget constraint, and the first-order conditions for labor and education, respectively:

$$u_n(c_n, l_n) \equiv c_n - \frac{l_n^{1+1/\varepsilon_n}}{1+1/\varepsilon_n}, \quad n = 1, 2,$$
(1)

$$z_n \equiv w_n h_n l_n = w_n a_n \phi_n(e_n) l_n, \quad \phi'(e_n) > 0, \quad \phi''(e_n) < 0, \quad n = 1, 2,$$
(2)

$$c_n = (1-t) \left(w_n a_n \phi(e_n) l_n - (1-s) p e_n \right) + b, \quad n = 1, 2.$$
(3)

$$l_n = ((1-t)w_n a_n \phi(e_n))^{\varepsilon_n}, \quad n = 1, 2.$$
(4)

$$w_n a_n \phi'(e_n) l_n = (1-s)p, \quad n = 1, 2.$$
 (5)

1 . 1 / -

Second-order conditions of individual optimization

By substituting the household budget constraint (3) into the utility function (1) to eliminate c_n , we arrive at the following unconstrained maximization problem

$$\max_{\{l_n, e_n\}} U_n = (1-t) \left(w_n a_n \phi(e_n) l_n - (1-s) p e_n \right) + b - \frac{l_n^{1+1/\varepsilon_n}}{1+1/\varepsilon_n}.$$
(6)

The first-order conditions are

$$\frac{\partial U_n}{\partial l_n} = (1-t)w_n a_n \phi(e_n) - l_n^{1/\varepsilon_n} = 0, \tag{7}$$

$$\frac{\partial U_n}{\partial e_n} = (1-t) \left(w_n a_n \phi'(e_n) l_n - (1-s)p \right) = 0.$$
(8)

^{*}Address: Department of Economics, Erasmus School of Economics, Erasmus University Rotterdam, PO box 1738, 3000 DR Rotterdam, The Netherlands. Phone: +31-10-4081452. Fax: +31-10-4089161. E-mail: bjacobs@ese.eur.nl. Homepage: http://people.few.eur.nl/bjacobs.

The second-order partial derivatives are ordered in the Hessian matrix H:

$$H \equiv \begin{bmatrix} -\frac{1}{\varepsilon_n} l_n^{1/\varepsilon_n - 1} & (1 - t) w_n a_n \phi'(e_n) \\ (1 - t) w_n a_n \phi'(e_n) & (1 - t) w_n a_n l_n \phi''(e_n) \end{bmatrix}.$$
 (9)

For utility to reach a maximum, the Hessian matrix should be negative definite. This is the case if the leading principal minors of H switch signs. The first principal minor is negative. Therefore, the second leading principal minor must be positive, i.e., $-\frac{1}{\varepsilon_n} l_n^{1/\varepsilon_n} (1-t) w_n a_n \phi''(e_n) - ((1-t)w_n a_n \phi'(e_n))^2 > 0$. Using (4) to eliminate l_n and substituting (2), this inequality can be written as

$$\mu_n \equiv 1 - \beta(1 + \varepsilon_n) > 0. \tag{10}$$

Elasticities of individual behavior

Log-linearizing (5) (using $\phi(e_n) = e_n^{\beta}$) gives

$$\tilde{l}_n + (\beta - 1)\tilde{e}_n = -\tilde{s}.$$
(11)

A tilde stands for a relative change (i.e., $\tilde{l}_n \equiv dl_n/l_n$, $\tilde{e}_n \equiv de_n/e_n$, et cetera), except for the tax rate and the subsidy rates, where $\tilde{t} \equiv dt/(1-t)$, and $\tilde{s} \equiv ds/(1-s)$.

Expression (4) implies that labor supply depends only on the after-tax wage rate $(1 - t)w_n a_n \phi(e_n)$ so that

$$\tilde{l}_n = \varepsilon_n (\beta \tilde{e}_n - \tilde{t}). \tag{12}$$

Substituting (12) into (11) to eliminate \tilde{l}_n , an expression for \tilde{e}_n is found

$$\tilde{e}_n = \frac{1}{\mu_n} \tilde{s} - \frac{\varepsilon_n}{\mu_n} \tilde{t}.$$
(13)

Substitution of (13) into (12), gives a solution for \tilde{l}_n

$$\tilde{l}_n = \frac{\beta \varepsilon_n}{\mu_n} \tilde{s} - \frac{\varepsilon_n (1 - \beta)}{\mu} \tilde{t}.$$
(14)

Therefore, the following elasticities of l_n and e_n with respect to the policy parameters are obtained

$$\varepsilon_n^{lt} \equiv -\frac{\partial l_n}{\partial t} \frac{(1-t)}{l_n} = \frac{\varepsilon_n (1-\beta)}{\mu_n},\tag{15}$$

$$\varepsilon_n^{et} \equiv -\frac{\partial e_n}{\partial t} \frac{(1-t)}{e_n} = \frac{\varepsilon_n}{\mu_n},\tag{16}$$

$$\varepsilon_n^{ls} \equiv \frac{\partial l_n}{\partial s} \frac{(1-s)}{l_n} = \frac{\beta \varepsilon_n}{\mu_n},\tag{17}$$

$$\varepsilon_n^{es} \equiv \frac{\partial e_n}{\partial s} \frac{(1-s)}{e_n} = \frac{1}{\mu_n}.$$
(18)

ε_1		0.3	0.25	0.2	0.15	0.1	
T_1'		-14.2%	-5.8%	-2.3%	-0.9%	-0.1%	
$T_2^{\overline{\prime}}$		43.1%	37.5%	35.3%	34.0%	33.4%	
$\bar{S_1'}$		12.5%	5.5%	2.6%	0.9%	0.1%	
S_2^{\dagger}		-41.4%	-14.5%	-6.2%	-2.0%	-0.3%	
2							
ε_2	0.35	0.3	0.25	0.2	0.15	0.1	
$\overline{T'_1}$	-6.4%	-4.7%	-3.5%	-2.7%	-2.0%	-1.5%	
$T_2^{\overline{\prime}}$	37.3%	36.4%	35.8%	35.3%	34.9%	34.6%	
$\bar{S'_1}$	6.0%	4.5%	3.4%	2.6%	2.0%	1.5%	
$S_2^{\dot{t}}$	-13.6%	-10.2%	-7.9%	-6.2%	-4.9%	-3.8%	
-							
β			0.25	0.2	0.15	0.1	
T_1'			-4.8%	-2.7%	-1.6%	-1.0%	
$T_2^{\overline{\prime}}$			36.7%	35.3%	34.6%	34.1%	
$\bar{S_1'}$			4.6%	2.6%	1.6%	1.0%	
S_2^{i}			-11.2%	-6.2%	-3.8%	-2.4%	
2							
ω_1	0.5	0.4	0.3	0.2	0.1		
T_1'	0.0%	-0.8%	-1.9%	-3.6%	-6.5%		
$T_2^{\overline{\prime}}$	0.0%	17.4%	30.1%	39.9%	48.2%		
$\tilde{S_1}$	0.0%	0.8%	1.9%	3.5%	6.1%		
$S_2^{\dot{7}}$	0.0%	-1.9%	-4.5%	-8.4%	-15.6%		

Table 1: Optimal non-linear tax and education policies – $\sigma = 0.5$

Robustness analysis

Tables 1 and 2 demonstrate that the results are completely robust to varying the elasticity of substitution over intervals that are considered empirically relevant.¹

¹Some empty cells appear in table 1 because the parameters of the model could not be too widely varied for values of $\sigma = 0.5$. The reason is that it must be ensured that the high-skilled worker has higher earnings than the low-skilled worker, so that a well-defined distribution problem results.

$\varepsilon_1 = 0.75 = 0.5 = 0.35 = 0.3 = 0.25 = 0.2$	0.15
T' 0.007 F CO7 2.107 0.007 1.407 0.007	-0.3%
$I_1 = -9.2\% = -3.0\% = -3.1\% = -2.2\% = -1.4\% = -0.8\%$	
T_2' 17.8% 23.2% 27.5% 29.1% 30.5% 31.8%	32.8%
S_1^{\prime} 8.4% 5.3% 3.0% 2.2% 1.4% 0.7%	0.3%
$S_2^{\bar{i}}$ -18.5% -11.2% -6.2% -4.5% -2.9% -1.5%	-0.5%
-	
ε_2 0.75 0.5 0.35 0.3 0.25 0.2	0.15
$\overline{T_1'}$ -0.1% -0.2% -0.4% -0.5% -0.6% -0.8%	-1.0%
$T_2^{'}$ 33.1% 32.8% 32.5% 32.3% 32.1% 31.8%	31.5%
$S_1^{ ilde{\prime}}$ 0.1% 0.2% 0.4% 0.5% 0.6% 0.7%	0.9%
$S_2^{'}$ -0.2% -0.5% -0.9% -1.0% -1.3% -1.5%	-1.8%
β 0.4 0.3 0.25 0.2 0.15 0.1	
$\overline{T_1'}$ -1.1% -0.9% -0.8% -0.8% -0.7% -0.6%	
$T_2^{'}$ 30.7% 31.4% 31.7% 31.8% 32.0% 32.1%	
$S_1' = 1.1\% = 0.9\% = 0.8\% = 0.7\% = 0.7\% = 0.6\%$	
$S_2^{\bar{i}}$ -2.7% -2.0% -1.7% -1.5% -1.4% -1.2%	
ω_1 0.5 0.4 0.3 0.2 0.1 0	
$\overline{T_1'}$ 0.0% -0.3% -0.6% -0.9% -1.1% -1.3%	
T_2' 0.0% 15.9% 27.3% 35.9% 42.6% 48.0%	
$\bar{S_1'}$ 0.0% 0.3% 0.6% 0.9% 1.1% 1.3%	
S_2' 0.0% -0.7% -1.2% -1.8% -2.3% -2.7%	

Table 2: Optimal non-linear tax and education policies – $\sigma = 2.5$

_
