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Abstract

This paper develops a model of optimal non-linear income and commodity taxation to ana-
lyze the desirability of aggregate production efficiency. In contrast to Diamond and Mirrlees
(1971) individuals have individual-specific production technologies. It is demonstrated that
the production efficiency theorem generally breaks down. Outputs of commodities should be
taxed at higher (lower) rates if high- (low-)ability agents have a comparative advantage in
producing them. In addition, outputs of commodities should be taxed relatively less when
labor supply is more complementary to these outputs. Aggregate production efficiency is
obtained only when the production technology for outputs does not depend on ability and is
weakly separable from labor. The breakdown of the Diamond-Mirrlees production efficiency
theorem has potentially important policy implications.

JEL code: H2
Key words: Diamond-Mirrlees production efficiency theorem, Atkinson-Stiglitz theorem,
optimal non-linear income taxation, optimal commodity taxation

1 Introduction

Should the government distort production activities? That is the question raised by Diamond

and Mirrlees (1971) in an article that is considered among the 20 most important papers of the

American Economic Review during the last century. Diamond and Mirrlees demonstrated that

it is optimal to operate an economy on the production possibilities frontier even in second-best

situations where the government employs distortionary taxation.1,2 This finding is often referred

to as the production efficiency theorem. It provides the theoretical foundation for some very

important policy prescriptions, such as the desirability of equal taxation of production sectors,

the optimality of not taxing intermediate goods, the optimality free trade, the undesirability of

∗The author thanks seminar participants of the CESifo Public Sector Area Conference 2014, and the UC
Berkeley Public Economics Seminar, Björn Brügemann, Aart Gerritsen, Robin Boadway, Ray Rees, Emmanuel
Saez, Danny Yagan, and especially Florian Scheuer and Josef Zweimüller for useful comments and suggestions.
The usual disclaimer applies.
∗∗Erasmus University Rotterdam, Tinbergen Institute, Netspar and CESifo. Address: Erasmus School

of Economics, Erasmus University Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands.
Phone: +31–10–4081452/1441. Fax: +31–10–4089166. E-mail: bjacobs@ese.eur.nl. Homepage:
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1Diamond and Mirrlees (1971) also note that two additional requirements are necessary: there need to be
constant returns to scale in production or, if this is not the case, the government needs to have access to a perfect
profit tax.

2Diamond and Mirrlees (1971) only considered linear taxes. Guesnerie and Seade (1982) demonstrated that
the production efficiency theorem carries over in straightforward fashion to non-linear taxation.

1



source-based capital taxes like the corporate income tax, and it prescribes using market prices

and discount rates in social cost-benefit analysis.3

This paper challenges the generality of the Diamond and Mirrlees (1971) production effi-

ciency theorem. We develop a relatively standard optimal non-linear tax model with multiple

commodities based on Diamond and Mirrlees (1971), Atkinson and Stiglitz (1976) and Mirrlees

(1976). Individuals differ in their ability, which is private information. The model differs in

one fundamental aspect from Diamond and Mirrlees (1971), Atkinson and Stiglitz (1976) and

Mirrlees (1976): it is no longer assumed that every individual has access to the same (aggregate)

production technology. Instead, it is assumed that every individual operates its own production

technologies to produce different commodities. An individual’s ability determines his/her pro-

ductivity in transforming inputs in production into outputs for consumption. The main result

of this paper is that when production technologies differ across individuals aggregate production

efficiency is no longer socially desirable.

The fundamental reason that production is optimally inefficient is that the marginal rates

of transformation between commodities provide valuable information on the hidden ability of

individuals. If high-ability individuals have a comparative advantage in the production of a

particular commodity, they will produce more of that commodity. The incentive-compatibility

constraints associated with income redistribution can thus be relaxed by distorting production

choices. Production of commodities should be taxed at higher (lower) rates when high-ability

individuals have a stronger (weaker) comparative advantage in production of these commodities,

i.e., when the marginal rates of transformation increase (decrease) with individual ability.

Moreover, we obtain a counterpart to Corlett and Hague (1953) and Atkinson and Stiglitz

(1976) for the production side of the economy. Differential taxation of the production of com-

modities is shown to be optimal when labor supply has different elasticities of complementarity

with the outputs of commodities. Intuitively, by distorting allocation of labor over various pro-

duction activities, the tax burden can be shifted to production activities with a more inelastic

labor demand, so that the total distortions in the labor market can be alleviated.4

The Diamond and Mirrlees (1971) production efficiency theorem assumes that every individ-

ual has access to identical technological possibilities to transform his/her inputs into outputs.

In that case, the incentive-compatibility constraints do not depend on the production side of

the economy and aggregate production efficiency prevails. Intuitively, no gain in redistribution

can be obtained by distorting production if the marginal rates of transformation are the same

for all agents, i.e., there is no comparative advantage in the labor market. Similarly, no reduc-

tions in labor market distortions can be obtained by distorting production, since labor demand

elasticities are the same across sectors (i.e., infinite). Hence, production distortions should be

avoided at all times. We derive the conditions under which aggregate production efficiency can

be obtained. This depends on whether the production function for outputs is the same for

everyone and is weakly separable from labor inputs. These conditions mirror the conditions

3Acemoglu, Tsyvinski, and Golosov (2008) show that the production efficiency theorem may even be valid in
dynamic political-economy settings where there is no benevolent planner.

4According to the Atkinson and Stiglitz (1976) theorem there should optimally be no commodity-tax dif-
ferentiation when individuals have identical and weakly separable utility functions. Our paper reveals that the
Atkinson-Stiglitz theorem should be interpreted as a consumption efficiency theorem, which is the counterpart of
the Diamond-Mirlees production efficiency theorem.
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required for the Atkinson-Stiglitz theorem to have consumption efficiency.

Finally, Diamond and Mirrlees (1971) show that optimal tax expressions for both income and

commodity taxation are the same in partial and general equilibrium and are independent from

parameters from the production side. Saez (2004) refers to this finding as the ‘Tax Formula’

result. Our analysis demonstrates that this result is no longer applicable when individuals have

different production technologies and production is optimally inefficient. Optimal tax formulae

are then dependent on the parameters from the production side of the economy.

The policy implications of our analysis can be large. Our findings suggest that outputs

from production activities in which high-ability agents have a comparative advantage should be

taxed at higher rates compared to outputs from activities in which low-ability workers have a

comparative advantage. Moreover, it is possible that minimum wages, industrial policies, trade

restrictions and tariffs are socially desirable for that same reason. Furthermore, our model

might explain why output of sectors with more (less) elastic labor demand should be taxed at

relatively lower (higher) rates than other sectors. In addition, taxation of intermediate goods

can be generally socially desirable. Finally, it is no longer guaranteed that using market prices

in government production or social cost-benefit analysis is optimal. All in all, our analysis could

provide a rationale as to why so many production inefficiencies are observed in the real world.

The rest of this paper is organized as follows. Section 2 discusses the relation to the existing

literature. Section 3 develops the main argument Section 4 discusses the policy implications.

Section 5 concludes.

2 Relation to the literature

Our analysis builds on several strands in the literature. First, numerous studies have explored

the generality of the Diamond-Mirrlees production efficiency theorem. As already discussed in

Diamond and Mirrlees (1971), the theorem is not applicable when not all transactions between

firms and households can be taxed, including household production, see for example Stiglitz

and Dasgupta (1971), Newberry (1986), and Kleven et al. (2000). Although these analyses are

obviously important, we maintain the assumption from Diamond and Mirrlees (1971) that the

government has access to a complete set of taxes on all outputs and commodities.

Second, Keen and Wildasin (2004) derive that the production efficiency does not generally

apply in international settings, since international lump-sum transfers between countries are

not available. These authors therefore cast doubts on the policy implications of the theorem

for free trade, residence-based capital taxation and destination-based commodity taxation. We

will assume a closed economy where such concerns do not arise.

Third, our findings are related to papers demonstrating that the production efficiency the-

orem is also not applicable when pure profits are not taxed at a 100 percent rate, see Diamond

and Mirrlees (1971), Stiglitz and Dasgupta (1971) and Mirrlees (1972). In our model, the

tax code is complete. The production efficiency theorem breaks down due to the presence of

ability-specific quasi-rents.

Fourth, Naito (1999), Naito (2004) – analyzing commodity taxation – and Gaube (2005) –

analyzing public-good provision – show that production efficiency breaks down when workers
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are imperfect substitutes in production. These authors use a Stiglitz (1982) 2-type model with

two commodities being produced in two different sectors with constant-returns-to-scale produc-

tion technologies. The Atkinson-Stiglitz theorem also no longer holds despite assuming weakly

separable preferences. Their results are driven by general-equilibrium effects on prices and/or

wages. Intuitively, changing factor prices affect the incentive-compatibility constraints, hence

factor-price movements should be exploited for income redistribution. Production efficiency

would be obtained in Naito (1999), Naito (2004) and Gaube (2005) when general-equilibrium

effects on prices and wages are absent. Our findings differ importantly from these studies,

since we assume constant prices. Moreover, we demonstrate that even when production is op-

timally distorted the Atkinson-Stiglitz theorem still applies, i.e., uniform commodity taxation

is optimal, when preferences are identical and weakly separable.

Fifth, Saez (2004) follows up on Naito (1999) and develops an optimal tax model with oc-

cupational choice. Individuals can choose in which occupation/sector to work. Saez (2004)

recovers both the Diamond-Mirrlees and Atkinson-Stiglitz theorems. In the long run, the rel-

ative supply to each occupation becomes infinitely elastic – even though labor types might be

imperfect substitutes in production. This eliminates all differences in the production technology

for individuals of different types. Since they only differ in their endowments of efficiency units

of labor, all standard results are shown to be applicable again.

Sixth, Jacobs and Bovenberg (2011) refine the analysis Bovenberg and Jacobs (2005) to study

optimal income taxation and optimal education subsidies in models with endogenous human

capital formation and general specifications of the labor earnings functions. Human capital

investment is the production of an intermediate good, which is then used in the final goods

sector of the economy. Individuals with a higher ability are more productive in transforming

human capital investment into labor earnings, that is high-ability individuals have a comparative

advantage in skill formation. Jacobs and Bovenberg (2011) show that it is optimal to distort

human capital formation, i.e., distort the demand for intermediate goods, for redistributional

or efficiency reasons.

Seventh, Gomes, Lozachmeur, and Pavan (2014) analyze a 2-sector Roy-model of occupa-

tional choice with linear production technologies. These authors show that besides labor supply

sectoral choice is distorted in second best, which they interpret as a violation of the Diamond-

Mirrlees production efficiency theorem. However, one may question whether an occupational

distortion, i.e. a distortion on labor supply on the extensive margin, should be interpreted

as a production inefficiency given that all marginal rates of transformation are constant and

equal to unity by definition. Gomes, Lozachmeur, and Pavan (2014) also demonstrate that

the Atkinson-Stiglitz theorem breaks down and non-uniform commodity taxation is generally

desirable.

3 Model

3.1 Individuals

There is a unit mass of individuals that are heterogeneous with respect to their one-dimensional

productive ability n ∈ N ≡ [n, n], where 0 < n < n ≤ ∞. Ability is continuously distributed
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according to H(n), which is the cumulative distribution function of n. h(n) is the corresponding

density function. Ability is private information. In contrast to Diamond and Mirrlees (1971)

there is no aggregate production technology in which all workers are assumed to be perfect

substitutes. Hence, ability is no longer equal to the number of efficiency units of labor. Ability

n reflects an individual’s productivity to transform inputs into outputs in production in a

manner that will be made precise below.

All individuals have a strictly concave, continuous and twice differentiable utility function

u(·). Individuals derive utility from I discrete commodities xi(n), indexed i ∈ I ≡ {0, · · · , I}.
x0(n) is the untaxed, numéraire commodity. The vector of commodities consumed by a n-

type individual is denoted by x(n) ≡ (x0(n), x1(n), · · · , xI(n)). In addition, individuals derive

disutility from supplying factor inputs lk(n), indexed k ∈ K ≡ {0, · · · ,K}, where the vector of

factor supplies is denoted by l(n) ≡ (l0(n), l1(n), · · · , lK(n)). These factor inputs can be seen

as different types of labor that are needed to produce the different commodities. For example

each labor type k may refer to hours worked in performing a specific task or job. However,

the factor supplies can be interpreted more broadly and may also include capital, land or other

inputs in production. To allow for preference heterogeneity utility may depend on ability type

n as in Mirrlees (1976). Hence, utility is written as:

u(n) ≡ u(x(n), l(n), n), uxi ,−ulk > 0, uxixi , ulklk < 0, ∀n. (1)

All individuals can produce all commodities x(n), which are then publicly traded in mar-

kets. Prices of the xi-goods are denoted by pi. The vector of gross commodity prices is

p ≡ (p0, p1, · · · , pI). The price of the numéraire good x0 is normalized to unity without loss of

generality, i.e. p0 = 1. For simplicity, we confine the analysis to a partial-equilibrium setting

where commodity prices p are fixed. The model can also be viewed as a small open economy

where commodity prices p are determined in international goods markets.5

Each individual has access to a production technology to produce commodities. Outputs of

commodities are designated by the vector y(n) ≡ (y0(n), y1(n), · · · , yI(n)). All outputs yi(n)

of the household are traded at gross market prices pi. The production technology allows the

individual to transform its K potential factor inputs into I potential outputs of each commodity.

Individual-specific production sets are strictly convex and are denoted by f(·):

f(y(n), l(n), n) = 0, fyi > 0, flk < 0, ∀n, i, k, (2)

lim
yi→0

fyi(·) =∞, lim
yi→∞

fyi(·) = 0, lim
ll→0

flk(·) = −∞, lim
ll→∞

flk(·) = 0,

The specification of the production set is general. If commodity i is an intermediate good it

enters as a negative output yi. These production technologies allow for comparative advantage:

for a given amount of factor input individuals with a higher ability n can be relatively more

5In Naito (1999) and Naito (2004) commodity prices are endogenously determined in general equilibrium on
goods markets of a closed economy. We abstract from this as general-equilibrium effects as such also determine
the desirability of aggregate production efficiency. Our results demonstrate that production inefficiency is optimal
even in the absence of general-equilibrium effects, in contrast to Naito (1999) and Naito (2004). As the analysis
of optimal second-best production distortions in general equilibrium would become analytically quite complex,
this extension is left for future research.
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productive in the production of xj-commodities than xi-commodities, i.e., fnyj/fyj < fnyi/fyi
(and vice versa) for all j, i and n. The inequality means that the factor input requirement

to produce one unit of output of xj-commodities is smaller than the factor input requirement

to produce one unit of output of xi-commodities for individuals with a higher ability n. In

addition, we assume absolute advantage: more able individuals, i.e. individuals with a higher n,

are able to transform their factor input in more output of all commodities. Mathematically, this

implies that fnyi < 0 for all n and i. Absolute advantage is required to ensure monotonicity,

and hence implementability, of the optimal second-best allocation.

The assumption that everyone has a different production technology to produce each com-

modity is a relatively weak one. Diamond and Mirrlees (1971) assume that every individual has

(access to) an identical production technology, which is a strong assumption. Diamond and Mir-

rlees (1971) is nested as a special case of our model, where the production functions are assumed

to be identical for all individuals. In Mirrlees (1971) there is one output, one input, and a linear

production technology. Hence, the production set is then given by: f(y, l, n) ≡ y/n− l = 0. Of

course, this implies that gross earnings per worker y equal productivity times labor effort nl.

We assume equality in the production constraint. This implies that production takes place

on the production possibilities frontier for each individual. We also impose Inada conditions

on the production set for analytical tractability. These conditions ensure that each individual

supplies labor effort in all jobs/tasks and produces all different commodities to some extent.

This helps us avoid corner solutions and other, unimportant technical issues that arise if we

would allow for extreme specialization patters. The analysis of corner solutions only distracts

from the main messages of this paper. By suitable assumptions on the production set one can

bring commodity demands or factor supplies arbitrarily close to zero.

Like in Mirrlees (1971), the government can neither verify individual factor supplies lk(n)

nor their productive ability n. However, the government is able to verify output yi(n) in each

production activity i and it can tax it accordingly. This is obviously a strong assumption, but it

corresponds to Diamond and Mirrlees (1971) who assume that all production and consumption

activities are verifiable by the government. Hence, all transactions between firms and house-

holds can be taxed. Indeed, when some intersectoral transactions cannot be verified, e.g. due

to an informal sector, aggregate production efficiency ceases to be optimal, see also Stiglitz

and Dasgupta (1971), Newberry (1986), and Kleven et al. (2000). By making these strong

assumptions, we deliberately bias our findings towards the desirability of aggregate production

efficiency.

The government levies non-linear taxes on the output volume of each commodity Ti(piyi(n)),

where the derivatives of the tax functions are assumed to be continuous, and denoted by

T ′i (piyi(n)) ≡ dTi(piyi(n))/d(piyi(n)). In addition, the government is able to verify the con-

sumption levels of all commodities. Hence, it can levy a set of non-linear ad valorem com-

modity taxes ti(pixi(n)) on all commodities, except for the numéraire commodity x0 where

t0 = 0. Also, commodity tax functions are continuous and have derivatives t′i(pixi(n)) ≡
dti(pixi(n))/d(pixi(n)). It is not a priori clear that separate tax schedules on the outputs of

each activity would support the optimal second-best allocation. However, under our assump-
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tions the implementation through separate schedules on outputs and commodities works.6 The

individual budget constraint can thus be written as:

I∑
i=0

pixi(n) + ti(pixi(n)) =
I∑
i=0

piyi(n)− Ti(piyi(n)), ∀n. (3)

A number of things about the household budget constraint are noteworthy. First, in view of

the non-linearity of the tax schedules Ti(·) and ti(·) arbitrage seems profitable. However, since

we assumed that all individual outputs and consumptions are verifiable to the government,

such arbitrage is ruled out. Second, we explicitly allow for a different set of taxes on consumer

and producer prices. Intuitively, the government would like to steer both the marginal rates of

substitution in consumption and the marginal rates of transformation in production, since in

our model each individual operates its own production technology. With a common, aggregate

production technology, as in Diamond and Mirrlees (1971), the marginal rates of transformation

do not vary by household type. We show later that this is the reason why aggregate produc-

tion efficiency is optimal. Consequently, there would be no reason to have different non-linear

schedules on different outputs, as these would only result in production distortions.

Households maximize utility (1) subject to their production set (2) and budget constraint

(3). Setting up a Lagrangian for the individual’s maximization problem, using λ(n) and µ(n)

as multipliers on the individual budget constraint and the production technology, gives:

L(n) ≡ u (x(n), l(n), n) + µ(n)f(y(n), l(n), n) (4)

+λ(n)

[
I∑
i=0

piyi(n)− Ti(piyi(n))−
I∑
i=1

pixi(n) + ti(pixi(n))

]
, ∀n.

Necessary first-order conditions for an optimum are denoted by:

∂L(n)

∂xi(n)
= uxi(·)− λ(n)pi(1 + t′i(·)) = 0, ∀n, i, (5)

∂L(n)

∂lk(n)
= ulk(·) + µ(n)flk(·) = 0, ∀n, k, (6)

∂L(n)

∂yi(n)
= µ(n)fyi(·) + λ(n)pi(1− T ′i (·)) = 0, ∀n, i. (7)

These first-order conditions are not sufficient to describe the individual optimum despite the

concavity assumptions on the utility and production functions. This is due to the non-linearity

of the tax schedules. Below we will derive the second-order sufficiency conditions that need to

be satisfied at the optimal second-best allocation.

These first-order conditions can be simplified to obtain the marginal rate of transformation

MRTij(n) of transforming xi-goods into xj-goods:

MRTij(n) ≡
(1− T ′j(pjyj(n)))fyi(y(n), l(n), n)

(1− T ′i (piyi(n)))fyj (y(n), l(n), n)
=
pi
pj
, ∀n, i, j. (8)

6Renes and Zoutman (2014) demonstrate that separate tax schedules indeed implement the optimal second-
best allocation as long as there is a single-dimensional source of heterogeneity and there are no externalities.
These conditions are satisfied in our model.
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Hence, if production of outputs i and j are taxed at the same rates (i.e., T ′i (·) = T ′j(·)), then

(individual) production efficiency is obtained among these activities, since the marginal rate of

transformation equals the relative output price.

Similarly, we can find the marginal rate of substitution MRSij(n) between xi-goods and

xj-goods:

MRSij(n) ≡ uxi(x(n), l(n), n)

uxj (x(n), l(n), n)
=

(1 + t′i(pixi(n)))pi
(1 + t′j(pjxj(n)))pj

, ∀n, i, j. (9)

Hence, if marginal commodity taxes are equal (t′i(·) = t′j(·)), then individual consumption

choices for these commodities are efficient.

Finally, the first-order conditions for factor supplies are denoted by:

ulk(x(n), l(n), n)

ux0(x(n), l(n), n)
= (1− T ′0(y0n))

flk(y(n), l(n), n)

fy0(y(n), l(n), n)
, ∀n, k. (10)

Hence, factor supplies are not distorted if marginal tax rate on the output of the numéraire

commodity is zero (T ′0(·) = 0).

3.2 Social objectives and resource constraint

The government is assumed to maximize a utilitarian sum of utilities:∫
N
u(x(n), l(n), n)dH(n). (11)

We assume that marginal utility of income is always declining with income. Diminishing private

marginal utility of income yields a social preference for redistribution.7 We assume that the

government is purely redistributive, as there is no revenue requirement. The aggregate resource

constraint of the economy is given by:

∫
N

I∑
i=0

piyi(n)−
I∑
i=0

pixi(n)dH(n) = 0. (12)

The aggregate production constraint is given by:∫
N
f(y(n), l(n), n)dH(n) = 0. (13)

The latter constraint implies that any production shortfall of one individual must be accompa-

nied by a production surplus of another individual. Satisfaction of the resource and technology

constraints and all the individual budget constraints implies that the government budget con-

straint will hold by Walras’ law.

7We could adopt a generalized social welfare function or use Pareto weights, but doing so would not yield
additional insights regarding the desirability of production (in)efficiency. Of course, the patterns of tax distortions
are affected by the social objective.
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3.3 First-best allocation

In order to interpret the second-best results derived below, we will first characterize the first-

best allocation in which the government maximizes social welfare (11) subject to the aggregate

resource constraint (12) and aggregate production constraint (13). By denoting by η as the

multiplier associated with the aggregate resource constraint (12) and by κ the multiplier asso-

ciated with the production constraint (13), the Lagrangian for this optimization problem can

be written as:

L ≡
∫
N

[
u(x(n), l(n), n) + η

(
I∑
i=0

piyi(n)−
I∑
i=0

pixi(n)

)
+ κf(y(n), l(n), n)

]
dH(n), (14)

Necessary and sufficient conditions for a first-best allocation are given by:

∂L
∂xi(n)

= uxi(·)− ηpi = 0, ∀n, i, (15)

∂L
∂yi(n)

= ηpi + κfyi(·) = 0, ∀n, i, (16)

∂L
∂lk(n)

= ulk(·) + κflk(·) = 0, ∀n, k. (17)

Hence, production efficiency is obtained since all marginal rates of transformation between all

commodities xi and xj are equalized for all individual production decisions of all xi commodities:

MRTij(n) ≡
fyj (y(n), l(n), n)

fyi(y(n), l(n), n)
=
pi
pj
, ∀n, i, j. (18)

Consumption efficiency is obtained since marginal rates of substitution between all commodities

xi and xj are equalized for all individual consumption decisions of all xi commodities:

MRSij(n) ≡ uxi(x(n), l(n), n)

uxj (x(n), l(n), n)
=
pi
pj
, ∀n, i, j. (19)

Factor supplies are not distorted:

ulk(x(n), l(n), n)

ux0(x(n), l(n), n)
=
flk(y(n), l(n), n)

fy0(y(n), l(n), n)
, ∀n, k. (20)

And, ‘redistributional efficiency’ is obtained, since all marginal utilities of consumption are

equalized across all individuals:

ux0(x(n), l(n), n) = η, ∀n. (21)

3.4 Incentive compatibility

Given that ability n is private information, the first-best allocation cannot be obtained as it is not

incentive compatible. Using a mechanism design approach, the optimal second-best allocation

is characterized with the revelation principle. First, we derive the incentive-compatible direct

mechanism. Second, we will decentralize this mechanism as an outcome of a competitive market
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using the non-linear tax schedules on outputs and commodities.

An allocation is said to be incentive compatible, when an individual of type n weakly

prefers the bundle {x(n), l(n)} of net consumption and factor supplies that the government

intends for type n over the bundle {x(n′), l(n′)} intended for another type n′. Hence u(n) =

maxn′ u(x(n), l(n), n), ∀n, n′ 6= n ∈ N . As in Mirrlees (1971), we will apply the first-order

approach to derive the second-best optimal allocation. The first-order incentive-compatibility

constraint is derived in Lemma 1.

Lemma 1 The first-order incentive-compatibility constraint is given by:

du(n)

dn
= −ul0(x(n), l(n), n)

fn(y(n), l(n), n)

fl0(y(n), l(n), n)
+ un(x(n), l(n), n), ∀n. (22)

Proof. Totally differentiating the utility function (1) gives – omitting the n-indices and function

arguments:

du

ux0
= dx0 +

I∑
i=1

uxi
ux0

dxi +
K∑
k=1

ulk
ux0

dlk +
un
ux0

dn, ∀n. (23)

Totally differentiating the individual budget constraint (3) yields:

dx0 +

I∑
i=1

pi(1 + t′i)dxi =

I∑
i=0

(1− T ′i )pidyi, ∀n. (24)

Next, use the first-order conditions for the individual problem (10) and (9) to substitute out

the prices in (24):

dx0 +
I∑
i=1

uxi
ux0

dxi = (1− T ′0)
I∑
i=0

fyi
fy0

dyi, ∀n. (25)

Totally differentiating the individual production set gives:

I∑
i=1

fyi
fy0

dyi +
K∑
k=0

flk
fy0

dlk +
fn
fy0

dn = 0, ∀n. (26)

Substitute (26) in (25) to eliminate
∑I

i=1
fyi
fy0

dyi:

dx0 +
I∑
i=1

uxi
ux0

dxi = −(1− T ′0)

(
K∑
k=0

flk
fy0

dlk +
fn
fy0

dn

)
, ∀n. (27)

Substitute (27) in the totally differentiated utility function, use (10) and rewrite the resulting

expression to establish Lemma 1.

In what follows, we will assume that the first-order approach is valid to characterize the

optimal allocation. Second-order sufficiency conditions for utility maximization are respected

under the constraint that is provided in Lemma 2.

Lemma 2 We can invert the production sets f(y(n), l(n), n) = 0 to express the vector of inputs

l(n) as a function of the vector of outputs y(n) and ability n: l(n) ≡ φ(y(n), n). Then, we

10



rewrite the utility function (1) in terms of observables x(n), y(n), and ability n as

u(n) ≡ u (x(n), l(n), n) = u (x(n), φ(n,y(n)), n) ≡ V (x0(n),X(n), n), (28)

where X(n) ≡ (x−0(n),y(n)) and x−0(n) ≡ (x1(n), x2(n), · · · , xI(n)) is the vector of all com-

modities except the numéraire commodity. The following constraint on the Spence-Mirrlees and

monotonicity conditions must hold at the optimal allocation:

d(VX/Vx0)

dn
· dX′n

dn
≥ 0. (29)

Proof. See Mirrlees (1976, 334–335).

In what follows we will write consumption of the numéraire good x0(n) as a function of the

allocation, that is: x0(n) ≡ x0(x−0(n), l(n), u(n), n), where x0(n) is obtained from inverting the

utility function u(n) = u(x(n), l(n), n). Derivatives of the consumption function x0(·) are found

using the implicit function theorem:

∂x0
∂lk

=
−ulk
ux0

= −(1− T ′0)
flk
fy0

,
∂x0
∂xi

= −uxi
ux0

= −(1 + t′i)pi,
∂x0
∂u

=
1

ux0
, ∀n. (30)

By denoting η as the multiplier associated with the aggregate resource constraint (12), κ

as the multiplier associated with the production constraint (13), θ(n) as the multiplier on the

incentive-compatibility constraint (22), the Hamiltonian for maximizing social welfare can be

formulated as:

H ≡ u(n)h(n) + κf(y(n), l(n), n)h(n) (31)

+η

(
I∑
i=0

piyi(n)− x0(x−0(n), l(n), u(n), n)−
I∑
i=1

pixi(n)

)
h(n)

+θ(n)ul0(x0(x−0(n), l(n), u(n), n),x−0(n), l(n), n)
fn(y(n), l(n), n)

fl0(y(n), l(n), n)

−θ(n)un(x0(x−0(n), l(n), u(n), n),x−0(n), l(n), n), ∀n.

The necessary first-order and transversality conditions to characterize an optimal allocation are

11



denoted by – omitting the indices n and the function arguments:

∂H
∂xi

= −η
(
pi +

∂x0
∂xi

)
h(n) + θ

fn
fl0

(
ul0xi + ul0x0

∂x0
∂xi

)
(32)

−θ
(
unxi + unx0

∂x0
∂xi

)
= 0, ∀n, i

∂H
∂yi

= κfyih(n) + ηpih(n) + θul0

(
fnyifl0 − fl0yifn

f2l0

)
= 0, ∀n, i, (33)

∂H
∂lk

= κflkh(n)− η∂x0
∂lk

h(n) + θ
fn
fl0

(
ul0lk + ul0x0

∂x0
∂lk

)
(34)

+θul0

(
fnlkfl0 − fl0lkfn

f2l0

)
− θun

(
unlk + unx0

∂x0
∂lk

)
= 0, ∀n, i,

∂H
∂u

=

(
1− η∂x0

∂u

)
h(n) + θul0x0

∂x0
∂u

fn
fl0
− θunx0

∂x0
∂u

=
dθ

dn
, ∀n 6= n, n, (35)

lim
n→n

θn = lim
n→n

θn = 0. (36)

3.5 Optimal consumption inefficiency

It will be useful to first derive the optimal consumption taxes, since the expressions for the opti-

mal production taxes will yield a mirror image. The next Proposition demonstrates under which

conditions it is optimal to distort consumption patters. Basically, this proposition generalizes

Atkinson and Stiglitz (1976) and Mirrlees (1976) to a setting with production distortions.

Proposition 1 The optimal non-linear marginal tax rates on demand for xi-commodities are

given by:

t′i(pixi(n))

1 + t′i(pixi(n))
=
ux0(·)θ(n)/η

nh(n)

(
∂ ln(uxi(·)/ux0(·))

∂ lnn
− nfn(·)
l0fl0(·)

∂ ln(uxi(·)/ux0(·))
∂ ln l0

)
, ∀n, i.

(37)

Proof. Substitute the derivatives of x0 in (30) into (32), rewrite using the first-order conditions

(9) – omitting the indices and function arguments:

pi −
uxi
ux0

uxi
ux0

=
ux0θ/η

nh(n)

nfn
l0fl0

(
l0ul0xi
uxi

− l0ul0x0
ux0

)
− ux0θ/η

nh(n)

(
nunxi
uxi

− nunx0
ux0

)
. (38)

Note that
l0ul0xi
uxi

− l0ul0x0
ux0

=
∂ ln(uxi/ux0 )

∂ ln l0
and

nunxi
uxi

− nunx0
ux0

=
∂ ln(uxi/ux0 )

∂ lnn . Finally, the tax

implementation uses the household’s first-order condition from (9), i.e.
uxi
ux0

= (1 + t′i)pi, which

can be used to eliminate
uxi
ux0

to establish the proposition.

The left-hand side of equation (37) gives the non-linear marginal tax wedge on commodity xi.

The right-hand side of equation (37) gives the marginal benefits of taxing commodity xi. The

marginal benefits of (differential) commodity taxation are twofold. First, commodity taxation

helps to complement the income tax to achieve the distributional goals of the government,

as captured by the first term in brackets on the right-hand side. In particular, if high-ability

individuals have a stronger (weaker) taste for commodity xi than low-ability individuals do, then

12



the marginal rate of substitution uxi/ux0 between both commodities increases (declines) with

n, so that
∂ ln(uxi/ux0 )

∂ lnn > 0 (< 0). Consequently, commodity xi needs to be taxed (subsidized).

Of course, this distributional benefit also comes at a cost of distorting commodity demands.

In the optimum, the government equates marginal redistributional benefits of commodity taxes

and marginal distortions in commodity demands. This motive for differential commodity taxes

is known since Mirrlees (1976), and has later been explored further by Saez (2002).

Second, differential commodity taxation is employed to alleviate the distortions of income

taxation on labor supply, as the second term in brackets on the right-hand side demonstrates.

Differential commodity taxation is optimal when the marginal rate of substitution between

commodity xi and the numéraire commodity x0 varies with labor supply:
∂ ln(uxi/ux0 )

∂ ln l0
6= 0.

That is, when good xi is more (less) complementary to labor than good x0 is, it will be optimal

to subsidize (tax) xi. Intuitively, by introducing a distortion in commodity demands, the

government is able to alleviate some of the distortions in labor supply created by the non-linear

income tax. See also Atkinson and Stiglitz (1976) and Jacobs and Boadway (2014).

The famous Atkinson-Stiglitz theorem is recovered when if the utility function is identical for

all n and preferences are weakly separable between commodities and labor, so that
∂ ln(uxi/ux0 )

∂ lnn =
∂ ln(uxi/ux0 )

∂ ln l0
= 0. In that case, t′(pixi(n)) = 0, since commodity taxes have no redistributional

benefit over and above income taxes and commodity taxes are impotent to boost downward

distorted labor supply. Hence, all commodities should be uniformly taxed (at zero rates). One

may therefore interpret the Atkinson-Stiglitz theorem as the ‘consumption efficiency theorem’

of public finance.

Naito (1999, 2004) analyzed optimal commodity taxation in settings with non-linear income

taxation and production inefficiencies. He showed that commodity tax differentiation is optimal

even when preferences are identical and weakly separable. Our results clarify that this is not due

to production inefficiencies as such. We showed that the Atkinson-Stiglitz theorem is recovered

even if production decisions are inefficient. The results of Naito (1999, 2004) are therefore due

to general-equilibrium effects on commodity prices, which are absent in our partial-equilibrium

framework with constant commodity prices.

3.6 Optimal production inefficiency

The next proposition states the main result of this paper.

Proposition 2 Aggregate production efficiency is not socially optimal. The optimal non-linear

tax wedge on output of commodity xi relative to the tax on the output of the numéraire commodity

x0 is given by:

T ′i (piyi(n))− T ′0(y0(n))

(1− T ′i (piyi(n)))(1− T ′0(y0(n)))
= −ux0(·)θ(n)/η

nh(n)

∂ ln(fyi(·)/fy0(·))
∂ lnn

+
ux0(·)θ(n)/η

nh(n)

nfn(·)
l0fl0(·)

∂ ln(fyi(·)/fy0(·))
∂ ln l0

, ∀n, i.(39)
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Proof. Use (33) for yi and y0:

κfyih(n) + ηpih(n) + θul0

(
fnyifl0 − fl0yifn

f2l0

)
= 0, (40)

κfy0h(n) + ηh(n) + θul0

(
fny0fl0 − fl0y0fn

f2l0

)
= 0. (41)

Subtract both equations to find:

κ(fyi − fy0)h(n) + η(pi − 1)h(n) = −θul0
f2l0

(fnyifl0 − fl0yifn − fny0fl0 + fl0y0fn) . (42)

Use (8) to find fyi = fy0pi
(1−T ′i )
(1−T ′0)

and substitute in (42):

κ

η
fy0

(
pi

(1− T ′i )
(1− T ′0)

− 1

)
+ (pi − 1) = −nul0

ux0

ux0θ/η

nh(n)

(fnyifl0 − fl0yifn − fny0fl0 + fl0y0fn)

f2l0
. (43)

Use (33) for y0 to derive

κ

η
fy0 = −1− nul0

ux0

ux0θ/η

nh(n)

(
fny0fl0 − fl0y0fn

f2l0

)
. (44)

Substitution of (44) in (43) and rearranging gives:

pi

(
T ′i − T ′0
1− T ′0

)
= −nul0

ux0

ux0θ/η

nh(n)

[
(fnyifl0 − fl0yifn)

f2l0
−

(
fny0fl0 − fl0y0fn

f2l0

)
pi

(1− T ′i )
(1− T ′0)

]
. (45)

Use (10) for k = 0 to find
ul0
ux0

= (1−T ′0)
fl0
fy0

and use (8) to find
fyi
fy0

= pi
(1−T ′i )
(1−T ′0)

. Substitute both

in (45) to find:

(T ′i − T ′0)
(1− T ′1)(1− T ′0)

= −nux0θ/η
nh(n)

(
fnyifl0 − fl0yifn

fl0fyi
−
fny0fl0 − fl0y0fn

fl0fy0

)
. (46)

Derive that 1
n

(
fnyi
fyi
− fny0

fy0

)
=

∂ ln(fyi/fy0 )

∂ lnn and 1
l0

(
fl0yi
fyi
− fl0y0

fy0

)
=

∂ ln(fyi/fy0 )

∂ ln l0
and rewrite so as

to establish the proposition.

Recall from the section on first-best policies above that aggregate production efficiency is

obtained when fy0/fyi = pi. In that case, the marginal rates of transformation between xi- and

x0-goods fy0/fyi for all commodities i are equalized for all individuals in the economy. From

Proposition 2 follows that commodity outputs are generally taxed at differential rates, hence

production inefficiency is generally desirable. To see why, we have fy0/fyi − pi > 0 (< 0) if the

output of xi goods is taxed at a higher (lower) rate than output of the numéraire commodity

x0, i.e., T ′i > T ′0 (T ′i < T ′0), see first-order condition (8). Consequently, aggregate production

decisions are generally not efficient (i.e., fy0/fyi 6= pi). Production inefficiencies are optimal for

two distinct reasons, which are the mirror image for the reasons why consumption inefficiencies

are optimal.
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First, if workers with a higher ability have a comparative advantage in producing the xi-

commodity over producing the numéraire x0-commodity, then we have fnyi/fyi < fny0/fy0(and

vice versa). Consequently, the marginal rate of transformation decreases in ability as higher

ability workers are able to produce relatively more output of xi-commodities than the x0-

commodities with an additional unit of factor input:
∂ ln(fyi/fy0 )

∂ lnn > 0. Thus, when the marginal

rate of transformation between xi- and x0-goods fyi/fy0 decreases (increases) with ability n,

output of xi-commodities should be taxed at higher (lower) rates than output of x0-commodities.

Intuitively, when an individual of a higher ability is relatively more (less) productive in producing

xi-goods, this individual will allocate more (less) of his factor inputs to producing these goods.

Consequently, the output from this production activity reveals information on the hidden ability

of this individual, which should optimally be exploited for income redistribution.

We thus uncover a production counterpart of the results by Mirrlees (1976) and Saez (2002).

These authors showed that if the marginal rates of substitution in consumption vary with ability,

then differential commodity taxation is optimal to redistribute income, see also the previous

section. Intuitively, the government wishes to tax commodities that the high-ability types like to

consume. We, in contrast, demonstrated that when marginal rates of transformation vary with

ability, the government should set higher taxes on the production of commodities in which the

high ability types have a comparative advantage. The government thus wishes to tax outputs

of commodities that high-ability individuals like to produce most.

Second, the term
∂ ln(fyi/fy0 )

∂ ln l0
captures to what extent labor supply is more complementary

to the production of yi commodities than to y0 commodities. It captures how the marginal

rate of transformation varies with labor supply. Outputs of commodities that are more comple-

mentary to labor should be taxed at lower rates, and vice versa. One can give a Ramsey-type

intuition to these results. Suppose that outputs of all commodities are independent, so that
∂fyi
∂yj

= 0, then
(
∂ ln fyi
∂ ln l0

)−1
can be interpreted as an implicit labor-demand elasticity in the pro-

duction of commodity xi. If the implicit labor-demand elasticity in production of xi commodities

(−∂ ln fyi/∂ ln li)
−1 is higher relative to the implicit labor-demand elasticity in production of

the numéraire commodity (−∂ ln fy0/∂ ln l0)
−1, the output of commodity xi should optimally

be taxed less than the output of the numéraire commodity x0. Intuitively, the government

wishes to introduce production distortions to alleviate the distortions on total factor supply.

By distorting the composition of production activities, the government induces individuals to

allocate their labor time towards production sectors where taxing output gives fewer labor mar-

ket distortions. Doing so reduces distortions in total factor supply l0(n) at the cost of distorting

production activities.

These findings are the production counterpart of the Corlett and Hague (1953), Atkinson

and Stiglitz (1976) and Jacobs and Boadway (2014) results for non-uniform commodity taxation.

Commodities are not equally complementary to leisure when the marginal rates of substitution

between commodities vary with labor effort. We demonstrate that a similar intuition applies

to the production side of the economy since non-uniform output taxation is optimal: when

the marginal rates of transformation between commodities vary with labor effort, outputs of

commodities that are not equally complementary to labor and should be taxed at differential

rates.
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We can consider two special cases that further illustrate the two main reasons for in-

troducing production distortions. First, suppose that the production technologies are given

by f(y(n), l(n), n) = φ(y(n), n) − ϕ(l(n)) = 0. In this case, we do allow for comparative

advantage, since ability n does affect the production of all outputs differently, so that the

marginal rates of transformation change with ability:
∂ ln(fyi/fy0 )

∂ lnn =
∂ ln(φyi/φy0 )

∂n 6= 0. But,

the marginal rates of transformation between any pair of outputs are constant in labor in-

put:
∂ ln(fyi/fy0 )

∂ ln l0
=

∂ ln(φyi/φy0 )

∂ ln l0
= 0. Thus, the implicit labor demand elasticities are infinite,

cf.
∂ ln fyi
∂ ln l0

=
∂ ln fy0
∂ ln l0

= 0. Consequently, production distortions are introduced only to exploit

comparative advantages, but not to alleviate labor market distortions.

An example of this technology is the following. Suppose we have only one labor input l and

two production outputs y0 and y1. Let the production set be described by a CES-technology:

f(y0(n), y1(n), l(n), n) ≡
[
γ

nα
(y0(n))ρ +

(1− γ)

nβ
(y1(n))ρ

] 1
ρ

−l(n) = 0, α, β, ρ > 0, 0 < γ < 1.

(47)

The marginal rate of transformation between y1 and y0 goods is: fy1/fy0 = (1−γ)
γ n(α−β)

(
y1
y0

)ρ−1
.

Consequently, we have
∂ ln(fy1/fy0 )

∂ ln l0
= 0 and

∂ ln(fy1/fy0 )
∂ lnn = α− β > 0. In this case, an individual

with a high ability n has a comparative advantage in producing y0 commodities over y1 com-

modities if α < β. For the same labor time allocated to production, the individual produces

more y0 goods than y1 goods. Consequently, output of y1-commodities should be taxed at a

higher rate.

Second, suppose now that comparative advantage is absent and production is described

by the following technology: f(y(n), l(n), n) = ϕ(n)φ(y(n), l(n)) = 0. In this case, we no

longer have comparative advantage, since ability affects all inputs and outputs symmetrically:
∂ ln(fyi/fy0 )

∂ lnn =
∂ ln(φyi/φy0 )

∂ lnn = 0. However, the marginal rates of transformation are not constant

in labor effort:
∂ ln(fyi/fy0 )

∂ ln l0
=

∂ ln(φyi/φy0 )

∂ ln l0
6= 0. Production distortions are thus introduced to

alleviate labor market distortions. An example is the following. Suppose we have only one labor

input and two production outputs. The production set is described by the following technology:

f(y0(n), y1(n), l(n), n) ≡ n
(
y0(n)

(l(n))α
+

y1(n)

(l(n))β
− 1

)
= 0, α, β > 0. (48)

In this case labor effort produces more y0 goods than y1 goods if α > β. The marginal rate of

transformation is given by
fy1
fy0

= lα−β. Consequently, we have
∂ ln(fyi/fy0 )

∂ lnn = 0 and
∂ ln(fy1/fy0 )

∂ ln l =

α − β. Thus, good y0 should be taxed at a lower rate than good y1 to reduce labor market

distortions.

How do our findings relate to Diamond and Mirrlees (1971)? Aggregate production efficiency

optimal in their analysis because all individuals have access to identical, constant returns-to-

scale production technologies. We can recover the production efficiency theorem if individuals

would differ only in their endowments of efficiency units of labor, and all production activities

would entail identical production technologies.
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Corollary 1 If the production sets are identical for all individuals and given by

f(y(n), l(n), n) ≡ A′y(n)− nl(n) = 0, ∀n. (49)

where A ≡ (A0, A1, · · · , AI) is a common vector of technological coefficients, then aggregate

production efficiency is obtained

fy0(y(n), l(n), n)

fyi(y(n), l(n), n)
=
A0

Ai
= pi, ∀n, i, (50)

and all outputs are taxed at equal rates T ′i (piyi(n)) = T ′0(y0(n)).

In this particular case, marginal rates of transformation are constant and equal to fy0/fyi =

A0/Ai. The marginal rates of transformation do neither vary with ability n nor with labor l0.

Hence, there is no comparative advantage
∂ ln(fyi/fy0 )

∂ lnn = 0 for all i and n. And, implicit labor-

demand elasticities are infinitely elastic in all production activities, since
∂ ln(fyi/fy0 )

∂ ln l0
= 0. In

this case, there are neither distributional nor efficiency reasons to distort production activities,

and we find aggregate production efficiency as the social optimum in second best. The corollary

assumes that the A-vector is constant, which is necessary in our partial-equilibrium setup so as

to ensure constant prices. However, the results would generalize to settings where the marginal

rates of transformation are determined endogenously in general equilibrium, but would be the

same for all individuals. This follows from the next point.

From the incentive compatibility constraints we can reveal a second intuition behind the

desirability of aggregate production inefficiency in Diamond and Mirrlees (1971). Note that

if f(y(n), l(n), n) = A′y(n) − nl(n) = 0, the incentive-compatibility constraint (22) can be

rewritten as:
du(n)

dn
= −ul0(x(n), l(n), n)

l(n)

n
+ un(x(n), l(n), n), ∀n. (51)

In this case the incentive-compatibility constraint (22) is the same as in Mirrlees (1971) if

preferences would be identical and un = 0. Thus, when production technologies of all indi-

viduals are equal, then the allocation of outputs of various commodities y(n) does not affect

the incentive-compatibility constraints. Intuitively, individuals of a higher ability type cannot

mimic individuals of a lower ability by reallocating their labor input to produce more of certain

outputs, as their labor productivity per hour worked is the same in the production of all com-

modities. Naturally, production decisions should be overall efficient then. This sheds a different

light on the meaning of the production efficiency theorem. As long as every individual can

freely trade all commodities, while everyone has the same access to the aggregate production

technology, it is not optimal to distort production decisions for income redistribution. Marginal

rates of transformation no longer reveal any information on ability.

Corollary 2 generalizes the special case of Diamond-Mirrlees to the case where there is a

Cobb-Douglas production set with uniform elasticities α.

Corollary 2 If production sets are Cobb-Douglas, i.e.,

f(y(n), l(n), n) ≡
I∏
i=1

Ai(yi(n))α − nφ(l(n)) = 0, α ≤ 1/I, (52)
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Then aggregate production efficiency is obtained:

fy0(y(n), l(n), n)

fyi(y(n), l(n), n)
=
A0

Ai

(
y0(n)

yi(n)

)α−1
= pi, ∀n, i, (53)

In this case high-ability individuals have no longer a comparative advantage in the produc-

tion of any commodity, since
∂ ln(fyi/fy0 )

∂ lnn = 0. We also have that the implicit labor-demand

elasticities are equalized across all activities:
∂ ln(fyi/fy0 )

∂ ln l0
= 0. Thus, there would be neither

redistributive reasons – exploiting comparative advantage – nor efficiency reasons – alleviating

labor supply distortions – to employ differential output taxes. This special case is interest-

ing because it demonstrates that it is not decreasing returns to scale in production as such –

giving rise to quasi-rents – that generates the violation of production efficiency, see for exam-

ple Diamond and Mirrlees (1971), Stiglitz and Dasgupta (1971) and Mirrlees (1972). Our tax

code is complete and there are no untaxed pure rents, see also the household budget constraint

(3). Indeed, production distortions are desirable only to the extent that they help to redis-

tribute ability-specific rents. If the elasticities α would differ across production activities i, then

production inefficiencies become optimal, as was shown above in a special case.

The Diamond and Mirrlees (1971) and Cobb-Douglas cases are not the only examples where

production efficiency is optimal. The critical question is under which properties on the pro-

duction technology production efficiency is obtained. These conditions are, again, the mirror

conditions of the Atkinson-Stiglitz theorem for consumption efficiency as the next proposition

shows.

Proposition 3 Aggregate production efficiency is obtained when the individual production sets

f(·) are weakly separable between outputs y(n) on the one hand and inputs l(n) and ability n,

on the other hand:

f(y(n), l(n), n) ≡ g(φ(y(n)), l(n), n) = 0, (54)

where φ(y(n)) is a sub-production function that is independent from n. The aggregate production

set can then be written as:∫
N
f(y(n), l(n), n)dH(n) =

∫
N
g(φ(y(n)), l(n), n)dH(n) = 0. (55)

Aggregate production efficiency does not require that an aggregate production technology,

which is defined only over aggregate inputs and aggregate outputs, exists. However, reverse is

always true. To see this, let the production technology be written as a function of the aggregate

outputs and inputs:∫
N
f(y(n), l(n), n)dH(n) ≡ F

(∫
N
y(n)dH(n),

∫
N
l(n)dH(n)

)
= 0. (56)

In this case, aggregate production efficiency results trivially, since the marginal rates of trans-

formation between any pair of commodities are independent from ability type n and individual

labor supply l(n), provided that each individual is infinitely small and cannot influence aggre-

gate economic conditions.
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Only under specific conditions individual production technologies can be aggregated into one

aggregate production technology.8 Gorman (1996) shows that as long as individual production

technologies belong to the Gorman polar form such aggregation is feasible as long as prices are

linear. This implies that supplies of outputs or demands for inputs in production feature linear

Engel curves in gross profits (value of output minus costs of production). These conditions

are not only very strict, but also rule out non-linear income taxation. Again, these conditions

mirror the conditions under which it is not useful to have linear commodity tax differentiation,

see Sandmo (1974), Atkinson and Stiglitz (1976) and Deaton (1979).

The production efficiency theorem is applicable to any subset of commodities that are pro-

duced with identical technologies, which can be aggregated into an aggregate production func-

tion. However, production efficiency would not be optimal for the remaining commodities,

where individuals do not share the same technological possibilities to produce them. Similarly,

we could allow for different firms, each having different production technologies, in which sub-

sets of the population work. This can be modelled by having identical individual production

functions for each subset of the population working in the same firm. Then, there will be

‘production efficiency’ within these subsets of the population, but not across the subsets of the

population.

Our interpretation is also related to the findings of Saez (2004). He analyzes optimal income

and commodity taxation in models in which individuals make an occupational choice. In his

analysis, the relative supply of labor for each occupation is infinitely elastic. Since all individuals

can supply labor in all occupations, perfect arbitrage on the labor market removes all factor

price differentials per efficiency unit of labor. All marginal rates of transformation become

identical across individuals. In other words: perfect arbitrage ensures that the production

technology becomes the same for all individuals. The only reason why individuals differ is their

endowments of efficiency units of labor. Hence, the standard Diamond-Mirrlees and Atkinson-

Stiglitz theorems apply given the usual conditions of weak separability, constant returns to

scale, etc.

Finally, our analysis reveals that optimal output taxes generally depend on parameters from

the production side of the model. Hence, the property in Diamond and Mirrlees (1971) that

optimal tax formulae only depend on the parameters from the consumption side of the economy

– dubbed the ‘Tax Formula result’ in Saez (2004) – is no longer applicable.

3.7 Optimal income taxation

Finally, we derive the optimal non-linear income tax on the output of the numéraire good, which

we will refer to as the non-linear income tax.

Proposition 4 The optimal non-linear income tax schedule on production of x0-commodities

8This question goes back to the old Cambridge-Cambridge controversy on whether an aggregate production
function can exist. See also Cohen and Harcourt (2003) for an overview of that debate.
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is given by:

T ′0(y0(n))

1− T ′0(y0(n))
=

ux0(·)θ(n)/η

nh(n)

nfn
l0fl0

(
∂ ln(ul0/ux0)

∂ ln l0
− ∂ ln(fl0/fy0)

∂ ln l0

)
(57)

+
ux0(·)θ(n)/η

nh(n)

(
−∂ ln(ul0/ux0)

∂ lnn
+
∂ ln(fl0/fy0)

∂ lnn

)
, ∀n,

θ(n)

η
=

∫ n

n

(
1

ux0(·)
− 1

η

)
(58)

× exp

[∫ m

n

(
∂ lnux0
∂ ln s

− sfs
l0fl0

∂ lnux0
∂ ln `

)
ds

s

]
h(m)dm > 0 ∀n, 6= n, n.

Proof. We can rewrite first-order condition (34) for l0 using the derivatives of x0 (30) and the

first-order condition (10) – omitting the indices and functional arguments where we evaluate

the expression only for l0:

κ

η
fy0 + (1− T ′0) = −fy0

fl0

θ/η

h(n)

fn
fl0

(
ul0l0 − ul0x0

ul0
ux0

)
(59)

−fy0
fl0

θ/η

h(n)

[
ul0

(
fnl0fl0 − fl0l0fn

f2l0

)
−
(
unl0 − unx0

ul0
ux0

)]
.

From the first-order condition for y0 (33) follows

κ

η
fy0 = −1− nul0

ux0

ux0θ/η

nh(n)

(
fny0fl0 − fl0y0fn

f2l0

)
. (60)

Substitution of (60) in (59) gives:

T ′0 =
fy0
fl0

θ/η

h(n)

[
fn
fl0

(
ul0l0 − ul0x0

ul0
ux0

)
+ ul0

(
fnl0fl0 − fl0l0fn

f2l0
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(61)

−fy0
fl0

θ/η
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(
unl0 − unx0

ul0
ux0

)
− nul0

ux0

ux0θ/η

nh(n)

(
fny0fl0 − fl0y0fn

f2l0

)
.

Use the first-order condition for y0 in (8) to find
ul0
ux0

= (1− T ′0)
fl0
fy0

, substitute this in (61) and

rearrange:
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1− T ′0

=
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fn
fl0

(
ul0l0 − ul0x0

ul0
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−ux0θ/η
nh(n)

[
n

ul0

(
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)
+
nfl0
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.

20



Note that
l0ul0l0
ul0
− l0ul0x0

ux0
=

∂ ln(ul0/ux0 )

∂ ln l0
,
nunl0
ul0
− nunx0

ux0
=

∂ ln(ul0/ux0 )

∂ lnn ,
nfnl0
fl0
− nfny0

fy0
=

∂ ln(ul0/ux0 )

∂ lnn

and
l0fl0l0
fl0
− l0fl0y0

fy0
=

∂ ln(fl0/fy0 )

∂ ln l0
. Hence, we find the first part of the Proposition:

T ′0
1− T ′0

=
ux0θ/η

nh(n)

nfn
l0fl0

(
∂ ln(ul0/ux0)

∂ ln l0
− ∂ ln(fl0/fy0)

∂ ln l0

)
(63)

−ux0θ/η
nh(n)

(
∂ ln(ul0/ux0)

∂ lnn
− ∂ ln(fl0/fy0)

∂ lnn

)
.

Further, use the derivatives in equation (30) in the first-order condition for utility (35) to

get:
dθ

dn
+ θ

(
unx0
ux0

− fn
fl0

ul0x0
ux0

)
=

(
1− η

ux0

)
h(n). (64)

Note that
nunx0
ux0

=
∂ lnux0
∂ lnn and

l0ul0x0
ux0

=
∂ lnux0
∂ ln ` :

dθ

dn
+
θ

n

(
∂ lnux0
∂ lnn

− nfn
l0fl0

∂ lnux0
∂ ln `

)
=

(
1− η

ux0

)
h(n). (65)

This is a linear differential equation in θ of the form dθ(n)
dn + a(n)θ(n) = b(n), with a(n) ≡

1
n

(
∂ lnux0
∂ lnn −

nfn
l0fl0

∂ lnux0
∂ ln `

)
and b(n) ≡ (1 − η

ux0 (·)
)h(n). This differential equation can be inte-

grated, using a transversality condition from (36) to find: θ(n) = −
∫ n
n exp

[∫m
n a(s)ds

]
b(m)dm.

Substituting for a(n) and b(n) yields the second part of the proposition.

The major difference of our expression for the optimal non-linear tax in (57) with the one

derived by Mirrlees (1971) is the elasticity term nfn
l0fl0

(
∂ ln(ul0/ux0 )

∂ ln l0
− ∂ ln(fl0/fy0 )

∂ ln l0

)
− ∂ ln(ul0/ux0 )

∂ lnn +

∂ ln(fl0/fy0 )

∂ lnn . This term consists of four elements. First, it encompasses the distortions of the

income tax on labor supply as captured by
∂ ln(ul0/ux0 )

∂ ln l0
, which equals the inverse of the standard

Frisch elasticity of labor supply. This term is the main ingredient of the elasticity of the tax

base in Mirrlees (1971). The higher is the elasticity of labor supply, the lower should be the

optimal tax rate. Second, the production distortion follows from
∂ ln(fl0/fy0 )

∂ ln l0
. When the tax

on the output of the numéraire commodity x0 is increased, the individual will allocate less

labor to the production of the numéraire commodity, and more to the production of other

commodities. This effect is new compared to Mirrlees (1971), since that analysis only considers

one production sector. In our setting there is a correction nfn
l0fl0

reflecting the fact that outputs

and earnings are determined by individual production functions. Third,
∂ ln(ul0/ux0 )

∂ lnn captures

how the willingness to supply labor varies with the skill level – conditional on labor income –

since we allowed for preference heterogeneity. It measures how ability affects the elasticity of

labor supply. Fourth,
∂ ln(fl0/fy0 )

∂ lnn captures how the production elasticities change with ability.

All four elements determine the effective elasticity of the total tax base. Note again that the

elasticity term generally depends on parameters on the production side of the economy.

The social marginal value of income redistribution θ(n)/η at skill level n in equation (59) is

the same as in Mirrlees (1971), except for the presence of
∂ lnux0 (·)
∂ lnn in the bracketed exp[·]-term

inside the integral.
∂ lnux0 (·)
∂ lnn , again, originates from the fact that we allowed for preference

heterogeneity. If the utility function would be the same for all individuals, it would disappear.

Saez (2001) and Jacobs and Boadway (2014) show that the term in brackets is associated with
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income effects in labor effort.

The expression for the optimal non-linear income tax is otherwise very similar to the ex-

pression found in Mirrlees (1971). To see this, suppose that the assumptions of the Dia-

mond and Mirrlees (1971) production efficiency theorem would hold and there would be no

preference heterogeneity. In particular, if individual production technologies are given by

f(y(n), l(n), n) ≡ A′y(n) − nl(n) = 0, and the utility function is u(x, l, n) = u(x, l), then

we can derive that
∂ ln(ul0/ux0 )

∂ lnn =
∂ ln(fl0/fy0 )

∂ ln l0
= 0,

∂ ln(fl0/fy0 )

∂ lnn = 1, and nfn
l0fl0

= 1. The optimal

non-linear income tax would be given by:

T ′0(y0(n))

1− T ′0(y0(n))
=
ux0(·)θ(n)/η

nh(n)

(
1 +

∂ ln(ul0/ux0)

∂ ln l0

)
(66)

Which is exactly the same expression as in Mirrlees (1971). Note that under these assumptions,

there would be overall production efficiency, hence the tax schedule is the same for all outputs

xi: T
′
i (piyi(n)) = T ′0(y0(n)). The interested reader may wish to consult Diamond (1998) and

Saez (2001) for more interpretations and intuitions of the non-linear tax schedule.

4 Policy implications

When not everyone has the same technological possibilities to transform inputs into outputs, the

practical desirability of free trade, no taxation of intermediate goods, the use of market prices

in social-cost benefit analysis or public sector production, might all be called into question. Our

analysis has therefore a number of potentially important policy-relevant implications, which we

will shortly discuss.

4.1 Capital income taxation

Our model could be given an intertemporal interpretation, with commodity x0 denoting con-

sumption today and commodities xi consumption levels at future dates. In such a context,

the marginal rates of transformation fy0/fyi can be viewed as the technological opportunities

to transform current consumption into future consumption. These production functions may

differ by individuals for various reasons. First, high-ability individuals might generate larger

returns on their savings than low-ability individuals do. For example, when they earn returns

on assets in their own, closely-held firms, which are also determined by individual productive

abilities, see for example Gerritsen et al. (2015). Second, more able individuals might earn larger

returns on their assets due scale effects in portfolio management (Piketty (2014)). Third, some

individuals might be barred from entering capital markets. If high-ability individuals are less

liquidity constrained than low-ability individuals are, then they are typically more efficient to

transform current consumption into future consumption. Fourth, when insurance markets are

missing, different individuals have different possibilities to transform current consumption into

expected future consumption. If risk risk aversion falls with productive ability, the consumption-

possibilities frontier in expected consumption will be less concave. For all these reasons, the

marginal rates of transformation in consumption differ by individual’s abilities. Consequently,

taxes on saving can be socially desirable for redistributional reasons, as Gerritsen et al. (2015)
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formally demonstrate.

4.2 Intermediate goods taxation

Jacobs and Bovenberg (2011) develop a completely worked out example where taxes or subsidies

on intermediate goods taxation are socially desirable. In their model, educational investment

is an intermediate good used in human capital production. Human capital is employed in final

goods production. Education should be taxed if high-ability individuals have a comparative

advantage in human capital formation. Education should be subsidized if this alleviates labor

market distortions. Whether human capital should be taxed or subsidized on a net basis remains

ambiguous as it is the result of these two off-setting effects. Our analysis shows that taxes

or subsidies on the use of intermediate goods can be optimal more generally. In our model

intermediate goods may be seen as negative xi’s in the production technology. Intermediate

goods should be taxed (subsidized) if high-ability (low-ability) individuals have a comparative

advantage in using these intermediate goods in final-goods production. Moreover, intermediate

goods should be taxed less (more) if they are stronger (weaker) complements with labor supply.

4.3 Differential sector taxation

Our results demonstrated that different outputs should be taxed at different rates so that

the playing field between sectors/occupations should not be level. Outputs produced in sec-

tors/occupations in which high-ability individuals have a comparative advantage – for example

IT of finance – should be taxed at higher rates than the outputs from sectors/occupations in

which low-ability individuals have a comparative advantage – for example restaurants. Similarly,

our findings might also explain why optimal tax rates should be lower in sectors/occupations

in which labor demand is relatively more elastic. Examples include the construction sector,

bars and restaurants or personal services. Due to the presence of close substitutes (household

production, black/grey labor market) labor demand might be relatively more elastic in these

sectors compared to other sectors/occupations.

4.4 Free trade

Our analysis showed that it is desirable to tax the output in which high-ability agents have a

comparative advantage, or to subsidize the outputs those sectors in which low-ability individuals

have a comparative advantage. This implies that in order to redistribute income in the most

efficient way, trade tariffs, production subsidies, and so on, could be socially desirable to raise

the net incomes of low-skilled workers. Indeed, some of the commodities in our model can

be traded goods. Similarly, deviations from residence-based factor taxes or destination-based

consumption taxes might be optimal. On the other hand, free trade could also make labor

demand in certain sectors more elastic as skilled labor or capital may move more easily abroad.

In that case, these sectors in which these inputs are more heavily used may be taxed less.
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4.5 Public production and social cost-benefit analysis

The findings of this paper imply that it may be not be desirable to use market prices in social

cost-benefit analysis. Indeed, the government may oversupply (undersupply) public goods if low-

skilled (high-skilled) workers are have a comparative advantage in producing them. Similarly,

the government may produce more public goods than dictated by conventional social cost-benefit

analysis, if these public goods help to lower labor market distortions in the private sector, for

example, through child-care facilities. Finally, there appears to be no obvious candidate for

the correct social discount rate if individuals have different intertemporal marginal rates of

transformation, see also our the discussion above.

5 Conclusions

The Diamond and Mirrlees (1971) production efficiency theorem is derived under the assump-

tion that all individuals have access to the same technological possibilities to transform their

inputs into outputs. These technological possibilities are described by the aggregate production

function. Although an aggregate production technology is a useful device to describe many

simple market transactions of homogeneous commodities or publicly traded assets, it does not

seem plausible that all individuals have identical access to the same technological opportunities

to transform their labor, assets and other resources into outputs, which can either be sold on

the market, consumed, or saved. The main message of this paper is that when individuals face

different technological possibilities, the production efficiency theorem generally breaks down.

We have shown that aggregate production efficiency is not desirable for either equity or

efficiency reasons. Production of goods should be taxed at higher (lower) rates if individuals

with higher (lower) earnings abilities have a comparative advantage in the production of these

goods. Outputs of certain goods should also be taxed at higher rates if labor supply is less

complementary with these outputs. When production technologies feature weak separability of

outputs from labor, and production of outputs are independent from ability, then the production

efficiency theorem is obtained.

For future research it is important to empirically examine to what extent individuals indeed

operate different production technologies. This is not an easy task. Individual’s factor incomes

(labor and capital incomes) are the result of many forces such as individual productive abilities,

occupational and human capital decisions, access to markets (for labor, capital and insurance),

general-equilibrium effects on factor prices, and so on.

If not all individuals have access to the same technological opportunities, then many of the

very strong policy prescriptions that follow from Diamond and Mirrlees (1971) – free trade,

no intermediate goods taxation, no sectoral differentiation in taxation, use of market prices in

public production and social cost-benefit analysis – need not be applicable. Many economic

policies that appear to be distortionary at first sight could turn out to be socially desirable

after all.
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