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Abstract This paper develops aMirrlees framework with skill and preference hetero-
geneity to analyze optimal linear and nonlinear redistributive taxes, optimal provision
of public goods, and themarginal cost of public funds (MCF). It is shown that theMCF
equals one at the optimal tax system, for both lump-sum and distortionary taxes, for
linear and nonlinear taxes, and for both income and consumption taxes. By allowing for
redistributional concerns, the marginal excess burden of distortionary taxes is shown
to be equal to the marginal distributional gain at the optimal tax system. Consequently,
the modified Samuelson rule should not be corrected for the marginal cost of public
funds. Outside the optimum, the marginal cost of public funds for distortionary taxes
can be either smaller or larger than one. The findings of this paper have potentially
important implications for applied tax policy and social cost–benefit analysis.

Keywords Marginal cost of funds · Marginal excess burden · Optimal taxation ·
Optimal redistribution · Optimal provision of public goods · Samuelson rule

JEL Classification H20 · H40 · H50

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s10797-
017-9481-0) contains supplementary material, which is available to authorized users.

B Bas Jacobs
bjacobs@ese.eur.nl
http://personal.eur.nl/bjacobs

1 Erasmus School of Economics, Erasmus University Rotterdam, PO Box 1738, 3000 DR
Rotterdam, The Netherlands

2 Tinbergen Institute, Rotterdam, The Netherlands

3 CESifo, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10797-017-9481-0&domain=pdf
https://doi.org/10.1007/s10797-017-9481-0
https://doi.org/10.1007/s10797-017-9481-0


884 B. Jacobs

Pigou (1947, p. 34): “Where there is indirect damage, it ought to be added to
the direct loss of satisfaction involved in the withdrawal of the marginal unit of
resources by taxation, before this is balanced against the satisfaction yielded by
the marginal expenditure. It follows that, in general, expenditure ought not to
be carried out so far as to make the real yield of the marginal unit of resources
expended by the government equal to the real yields of the last unit left in the
hands of the representative citizen.”

1 Introduction

The marginal cost of public funds is the ratio of the social marginal value of a unit
of resources raised by the government and the social marginal value of a unit of
resources in the private sector.1 Themarginal cost of public funds is therefore ameasure
indicating the scarcity of public resources. Ever since Pigou (1947), many scholars
and policymakers are convinced that the marginal cost of public funds must be larger
than one, since the government relies on distortionary taxes to finance its outlays. If the
marginal cost of public funds is indeed larger than one, this has important normative
consequences for the determination of optimal public policy in many fields.

In early theoretical contributions, Stiglitz and Dasgupta (1971) and Atkinson and
Stern (1974) demonstrated that the Samuelson (1954) rule for the optimum provision
of public goods needs to be modified to account for tax distortions.2 The optimal level
of public goods provision should be lower, and the optimal size of the government
should thus be smaller, if themarginal cost of public funds is higher.Manyapplied cost–
benefit analyses multiply the cost of public projects with a measure for the marginal
cost of public funds that is larger than one. As a result, public projects are less likely
to pass a cost–benefit test. For example, Heckman et al. (2010) evaluate the Perry
Preschool Program and add 50 cents per dollar spent to account for the deadweight
costs of taxation. Many other examples can be given, but the message is clear: The
marginal cost of public funds has a tremendous impact on how governments should
evaluate the desirability of public policies.3

1 This paper follows the mainstream literature by referring to the marginal cost of public funds as the ratio
of the social marginal value of public resources relative to the social marginal value of private resources.
Occasionally, however, the social marginal value of public resources (i.e., the value of the Lagrange mul-
tiplier on the government budget constraint) is also referred to as the marginal cost of public funds. Both
coincide only if the social marginal value of private income is constant and equal to one, which is the case
with quasi-linear utility (no income effects) and no redistributional concerns.
2 Ballard and Fullerton (1992), Dahlby (2008), and Jacobs (2009) provide extensive reviews of the large
literature that subsequently emerged.
3 Other examples include Sandmo (1975) and Bovenberg and De Mooij (1994), who demonstrate that
the optimal corrective tax is generally set below the Pigouvian tax, since a high marginal cost of public
funds raises the cost of internalizing of externalities in second-best settings with distortionary taxes. Hence,
governments should pursue less ambitious environmental policies if taxation is more distortionary. Laffont
and Tirole (1993) put the marginal cost of public funds at the center of their theories on optimal procurement
and regulation. A larger cost of public funds renders rent extraction more valuable compared to provision of
cost-reducing incentives. Barro (1979) and Lucas and Stokey (1983) derive that the optimal path of public
debt ensures that tax rates are smoothed over time. Consequently, debt policy is aimed at equalizing the
marginal cost of public funds over time.
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This paper questions the conventional wisdom that themarginal cost of public funds
is necessarily larger than one by explicitly introducing distributional concerns to moti-
vate tax distortions. Most of the literature has focused on Ramsey (1927) frameworks
with homogeneous agents where redistributional concerns are absent by assumption
see, e.g., Browning (1976, 1987), Wildasin (1984), and Ballard and Fullerton (1992).
Hence, the marginal cost of public funds for distortionary taxes are analyzed, without
paying attention to the ultimate reasons why there are distortionary taxes.4

This paper contributes to the literature on the marginal cost of public funds
in a number of ways. First, it follows Mirrlees (1971) by providing a micro-
economic foundation for tax distortions. Earning abilities and labor supplies are
private information. These informational constraints in combination with distribu-
tional concerns of the government are the reason why distortionary taxation is optimal
in second-best settings. Second, this paper does not need to rule out non-distortionary,
non-individualized lump-sum taxes to obtain a non-trivial second-best policy problem,
as in the representative-agent literature.

The main finding of this paper is that, at the optimal tax system, the marginal
cost of public funds is equal to one for all tax instruments. The marginal cost of
public funds for the non-distortionary non-individualized lump-sum tax equals one
at the optimal tax system. This comes as no surprise, since non-individualized lump-
sum taxes neither feature distortions nor distributional benefits. By adjusting non-
individualized lump-sum transfers, the government ensures that the social marginal
value of resources is equalized in the public and the private sector. Moreover, the
marginal cost of public funds for distortionary taxes should be one as well, since it
should be equal to the marginal cost of public funds for non-distortionary taxes. In
settingswith heterogeneous agents, themarginal cost of public funds for a distortionary
tax is thus shown to depend not only on the marginal excess burden of the tax, but also
on the marginal distributional benefits of the tax. If the marginal cost of public funds
is one at the optimal tax system, the marginal excess burden of a distortionary tax is
exactly compensated by its marginal redistributional benefits.

To demonstrate how allowing for heterogeneous agents and non-individualized
lump-sum taxes drive our main findings, this paper analyzes the special case in which
the government cannot optimize lump-sum transfers. Even then it is not correct to
conclude that the marginal costs of public funds of a distortionary tax is necessarily
larger than one. The marginal cost of public funds for distortionary taxes can either be
larger or smaller than one depending on whether the marginal distributional gains are
smaller or larger than the excess burden of the distortionary tax. The representative-
agent models are nested as a special case of the model without non-individualized
lump-sum taxes and where all distributional benefits of taxation are zero. Only in that
special case one can unambiguously conclude that the marginal cost of public funds

4 Some authors have allowed for heterogeneous agents, see, for example, the contributions by Browning
and Johnson (1984) and Allgood and Snow (1998), but these studies focus mainly on the efficiency costs
of taxation. Others have explicitly introduced distributional aspects of public goods and taxes, see, e.g.,
Christiansen (1981), Boadway and Keen (1993), Kaplow (1996), Sandmo (1998), Slemrod and Yitzhaki
(2001), and Dahlby (2008).
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is larger than one, since all available tax instruments only cause distortions, but yield
no redistributional gains.

The literature on the marginal cost of public funds has generated substantial con-
fusion, see also the reviews in Ballard and Fullerton (1992), Dahlby (2008), and
Jacobs (2009). In particular, earlier literature has not settled down on a commonly
agreed definition for the marginal cost of public funds.5 Moreover, the most regularly
used definition, e.g., in Atkinson and Stern (1974), Ballard and Fullerton (1992), and
Sandmo (1998), has some undesirable properties. First, the marginal cost of public
funds for lump-sum taxes is generally not equal to one, even though there is no theo-
retical presumption that the marginal cost of public funds for lump-sum taxes should
differ from one if lump-sum taxes are optimized. Second, measures for the marginal
cost of public funds of distortionary taxes do not directly relate to the marginal excess
burden of taxation, even though this relationship is suggested by, e.g., Pigou (1947),
Harberger (1964), and Browning (1976). Finally, standard measures for the marginal
cost of public funds are highly sensitive to the choice of the untaxed numéraire good.
All these properties of standard measures for the marginal cost of public funds make
it difficult to apply in policy, for example, in social cost–benefit analysis.

This paper aims to resolve the issues in the literature by defining themarginal cost of
public funds as the ratio of the social marginal value of public income and Diamond
(1975)’s measure of (the average of) the social marginal value of private income.6

Intuitively, if the private sector receives an additional unit of funds, social welfare not
only increases because the private sector experiences higher utility, but social welfare
also changes if the additional unit of funds in the private sector causes income effects
in behavior that result in revenue losses or revenue gains for the government. These
income effects on taxed bases need to be taken into account to correctly calculate the
marginal cost of public funds. However, the standard definition of the marginal cost
of public funds is defined as the ratio of the social marginal value of public income
(measured in ‘social utils’) and (the average of) the private marginal value of private
income (measured in ‘private utils’). The traditional measure therefore ignores the
income effects on taxed bases, which is shown to cause all its undesirable properties.

5 On the one hand, the so-called Pigou–Harberger–Browning approach (also called ‘differential analysis’)
equates the marginal cost of public funds to one plus the marginal excess burden of taxation, which is
determined by the compensated tax elasticity of earnings, see also Pigou (1947), Harberger (1964), and
Browning (1976, 1987). On the other hand, the Atkinson–Stern–Ballard–Fullerton approach (also called
‘balanced-budget approach’) bases the marginal cost of public funds on the ratio of the marginal value of
income of the public and the private sector (i.e., the ratio of Lagrange multipliers on the government budget
constraint and the private budget constraint). In that case, the uncompensated tax elasticity of earnings supply
determines the marginal cost of funds, see also Atkinson and Stern (1974) and Ballard and Fullerton (1992).
By using the latter approach to the marginal cost of funds, Sandmo (1998) and Slemrod and Yitzhaki (2001)
include distributional aspects of distortionary linear taxation, while Gahvari (2006) extends it to nonlinear
taxation. Using models with representative agents, Triest (1990), Håkonsen (1998), and Dahlby (1998)
develop yet another MCF concept relying on correcting the standard MCF measures with a ratio of the
shadow value of public resources before and after the introduction of distortionary taxes. Up to this date, it
remains unclear which MCF measure should be used in applied policy analysis.
6 This paper is related to an unpublished paper by Lundholm (2005) that also analyzes optimal second-
best public goods provision under optimal linear income taxation using the Diamond approach to the social
marginal value of income.
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By using the Diamond-based measure for the marginal cost of public funds, it is
demonstrated that—at the optimal tax system—the marginal cost of public funds for
lump-sum taxes is one, the marginal cost of public funds for distortionary taxes is
directly related to the excess burden (in the absence of distributional concerns), and
the marginal cost of public funds measures are no longer sensitive to the normalization
of the tax system.

The remainder of this paper is structured as follows. Section 2 introduces themodel.
Section 3 is devoted to optimal taxation, optimal provision of public goods, and the
marginal cost of public funds under linear tax instruments. Section 4 shows that the
main result extends to nonlinear taxation using a tax perturbation. Section 5 discusses
the policy implications of the analysis. Section 6 concludes. An online Appendix
derives themarginal cost of public funds using compensating variations and rigorously
proves the main findings under nonlinear instruments.

2 Model

The model consists of heterogeneous individuals optimally supplying labor on the
intensive margin and a benevolent government optimally setting taxes and public
goods.7 Without loss of generality, a partial-equilibrium setting is assumed in which
prices are fixed, so that firms can be ignored.8 The paper mainly focuses on linear tax
instruments. Later it is demonstrated that the main findings carry over to nonlinear
instruments.

2.1 Individuals

There is a mass N of individuals that differ by a single-dimensional parameter
n ∈ N = [n, n], where the upper bound n could be infinite. n is the individual’s
earning ability (‘skill level’), which equals the productivity per hour worked. The
density of individuals of type n is denoted by f (n) and the cumulative distribution
function by F(n). Note that N

∫
N f (n)dn = N .

Each individual n derives utility u(n) from consumption c(n) and pure public goods
G. Furthermore, it derives disutility from supplying labor l(n). Each individual has
an endowment of time, which is allocated between leisure and working. Consumption
and leisure are both assumed to be normal goods. This paper allows for preference

7 It is based on earlier contributions by Ramsey (1927), Mirrlees (1971), Diamond and Mirrlees (1971),
Sheshinski (1972), Diamond (1975), Christiansen (1981), Boadway and Keen (1993), Kaplow (1996) and
Sandmo (1998).
8 Jacobs (2010) analyzes the model in general-equilibrium settings allowing for a representative firm
operating a constant returns-to-scale technology and none of the results change. Almost all of the papers
in the literature fix the marginal rates of transformation between all commodities at one. Hence, all prices
are constant, and allowing for general equilibrium provides no additional insights. Moreover, our partial-
equilibrium results fully generalize to general-equilibrium settings with non-constant prices, since optimal
second-best tax rules in general equilibrium are identical to the ones in partial equilibrium as long as there
are constant returns to scale in production and all labor types are perfect substitutes in production, see also
Diamond and Mirrlees (1971).
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heterogeneity: The utility function depends on the skill level n. The utility function is
strictly (quasi-)concave and is twice continuously differentiable:

u(n) ≡ u(c(n), l(n),G, n), uc,−ul , uG > 0, ∀n. (1)

Subscripts denote partial derivatives.
The government employs a tax schedule consisting of a linear tax rate t on gross

labor earnings z(n) ≡ nl(n), a linear tax rate τ on consumption goods c(n), and a non-
individualized lump-sum transfer g. The informational requirements for employing
linear taxes are that the government should be able to verify aggregate labor income
or consumption. Note that non-individualized lump-sum transfers are always part of
the instrument set of the government, since the government can always provide each
individual with an equal amount of resources. The individual budget constraint states
that net expenditures on consumption are equal to net labor earnings:

(1 + τ)c(n) = (1 − t)z(n) + g, ∀n. (2)

One tax instrument is redundant, since the consumption tax is equivalent to the income
tax. Thus, without loss of generality, one tax instrument can always be normalized to
zero.

The individual maximizes utility (1) subject to its budget constraint (2). This yields
the standard first-order condition for labor supply:9

−ul(c(n), l(n),G, n)

uc(c(n), l(n),G, n)
= (1 − t)n

1 + τ
, ∀n. (3)

Taxation is distortionary as it drives a wedge between the marginal social benefits (n)
and the marginal private benefits ((1 − t)n/(1 + τ)) of an increase in labor supply.

Indirect utility of individual n can be written as v(n) ≡ v(t, τ, g,G, n).
Straightforward application of Roy’s identity yields the following properties of v(·):
∂v(n)

∂t = − λ(n)z(n), ∂v(n)
∂τ

= − λ(n)c(n), ∂v(n)
∂g = λ(n), and ∂v(n)

∂G = λ(n)
uG
uc
, where

λ(n) is the private marginal utility of income of individual n. Given that preferences
depend on the skill level n, the private marginal utility of income is not necessarily
non-increasing in n. To ensure that a well-defined redistribution problem is obtained,
it is assumed that ∂λ(n)

∂n ≤ 0. This inequality always holds if preferences are identical
for all individuals due to the assumptions on the derivatives of the utility function.

Some additional notation is introduced to express the optimal policy rules in
terms of well-known elasticity concepts. In particular, the compensated, uncom-
pensated and income elasticities of labor supply and consumption demand with
respect to the tax rates and the public good are denoted by: εult ≡ ∂lu(n)

∂t
1−t
l(n)

,

εclt ≡ ∂lc(n)
∂t

1−t
l(n)

< 0, εulG ≡ ∂l(n)
∂G

G
l(n)

, εclG ≡ ∂lc(n)
∂G

G
l(n)

, εlg ≡ (1 − t)n ∂l(n)
∂g < 0,

εucτ ≡ ∂cu(n)
∂τ

1+τ
c(n)

, εccτ ≡ ∂cc(n)
∂τ

1+τ
c(n)

< 0, εucG ≡ ∂cu(n)
∂G

G
c(n)

, εccG ≡ ∂cc(n)
∂G

G
c(n)

, and

9 Under linear instruments, first-order conditions are both necessary and sufficient given the restrictions on
the derivatives of the utility function. Under nonlinear policies, however, budget constraints are nonlinear
and additional assumptions, i.e., monotonicity and Spence–Mirrlees conditions, are required to ensure that
first-order conditions are both necessary and sufficient, see also the online Appendix.
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εcg ≡ (1 + τ)
∂c(n)
∂g > 0, where the superscript u (c) denotes an uncompensated

(compensated) change. In the remainder of the paper, a bar is used to indicate an
income-weighted elasticity, e.g., ε̄clt ≡ [∫

N εclt z(n)dF(N )
] [∫

N z(n)dF(n)
]−1.

2.2 Government

The social objective is a utilitarian social welfare function:

N
∫

N
u(n)dF(n). (4)

Maximizing a utilitarian social welfare function implies a social preference for income
redistribution, since the private marginal utility of income λ(n) declines with skill n
at the individual level.10

The government budget constraint states that total tax revenues equal spending on
transfers and public goods:

N
∫

N
(t z(n) + τc(n))dF(n) = Ng + pG. (5)

where p denotes the constant marginal rate of transformation (i.e., the price) of public
goods in terms of private goods.

3 Optimal taxation and public goods provision

The government maximizes social welfare subject to its budget constraint by choosing
the non-individualized lump-sum transfer g, the tax rate on income t or consumption
τ , and the level of public goods provision G. Optimal policies are derived under both
tax normalizations (i.e., either consumption or income remains untaxed). The social
marginal value of one unit of public resources is denoted by η. The Lagrangian for
maximizing social welfare is given by:

L ≡ N
∫

N
v(t, τ, g,G, n)dF(n) + η

(

N
∫

N
(tnl(n) + τc(n))dF(n) − Ng− pG

)

.

(6)

The first-order conditions for a maximum are:

∂L
∂g

= N
∫

N

(

λ(n) − η + ηtn
∂l(n)

∂g
+ ητ

∂c(n)

∂g

)

dF(n) = 0, (7)

10 The utilitarian case allows for the clearest representation of the main ideas in this paper. All results can
be generalized to allow for a general, concave social welfare function �(u(n)), with � ′(·) > 0, � ′′(·) < 0,
where the government may exhibit a stronger preference for redistribution than individuals do. See also the
working paper version of this article (Jacobs 2010). As a corollary, all results also generalize to the case
with exogeneously given Pareto weights δ(n), i.e., where �(u(n)) ≡ δ(n)u(n), � ′ = δ(n), and � ′′ = 0.
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∂L
∂t

= N
∫

N

(

− λ(n)nl(n) + ηnl(n) + ηtn
∂l(n)

∂t
+ ητ

∂c(n)

∂t

)

dF(n) = 0, (8)

∂L
∂τ

= N
∫

N

(

−λ(n)c(n) + ηc(n) + ηtn
∂l(n)

∂τ
+ ητ

∂c(n)

∂τ

)

dF(n) = 0, (9)

∂L
∂G

= N
∫

N

(

uG + ηtn
∂l(n)

∂G
+ ητ

∂c(n)

∂G

)

dF(n) − pη = 0, (10)

where the derivatives of indirect utility have been used in each first-order condition.11

3.1 Marginal cost of public funds—the Diamond approach

This section derives optimal policies by employing a new definition for the marginal
cost of public funds. The findings of this paper are contrasted with the more traditional
definition in Sect. 3.2. By defining themarginal cost of public funds based on the social
marginal value of income of Diamond (1975), it will be demonstrated that a number
of issues with the traditional definition disappear. Moreover, new theoretical insights
are derived that are policy relevant. The social marginal value of income of Diamond
(1975) is given in the following definition.

Definition 1 The Diamond definition for the social marginal value of one unit of
private income accruing to individual n equals

α(n) ≡ λ(n) + ηtn
∂l(n)

∂g
+ ητ

∂c(n)

∂g
, ∀n. (11)

As in the traditional definition, the social marginal value of private income captures the
rise in social welfare if individual n has one unit of additional resources as measured
by λ(n). The social marginal value of private funds is larger if the direct utility gains
of a unit of private funds λ(n) are larger. However, the Diamond (1975) definition
also includes the social value of the income effects on taxed bases. Intuitively, if the
private sector has one unit of additional funds, this not only changes social welfare
by providing utility to individuals, but it also changes social welfare if that unit of
funds changes public revenue via income effects on taxed bases. In particular, if an
individual receives an additional unit of funds, labor supply is reduced ( ∂l(n)

∂g < 0) and

consumption demand increased ( ∂c(n)
∂g > 0), since both leisure and consumption are

assumed to be normal goods. Hence, the government loses − tn ∂l(n)
∂g in tax revenues

from the income tax (if t > 0) or gains τ
∂c(n)
∂g in revenues from the consumption tax

(if τ > 0) if the individual receives an additional unit of funds. The social welfare
effects of these revenue changes are obtained by multiplication of the revenue changes
with η, the social marginal value of public resources. Thus, α(n) measures the total
increase in social welfare if individual n has one unit of additional funds. Adopting

11 The first-order conditions are necessary, but may not be sufficient to characterize the optimum (Diamond
and Mirrlees 1971). In the remainder it’s assumed that the second-order conditions for maximization of
social welfare are always respected.
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α(n) as the social marginal value of private income of individual n makes it possible
to define the marginal cost of public funds.

Definition 2 The marginal cost of public funds based on the Diamond measure of the
social marginal value of private income is given by

MCF ≡ η
∫
N α(n)dF(n)

. (12)

Analogously to the standard measure for the marginal cost of public funds, the
Diamond-based measure for the marginal cost of public funds MCF thus measures the
social marginal value of one unit of funds in the public sector η relative to the average
social marginal value of one unit of funds in the private sector, i.e.,

∫
N α(n)dF(n).12

Using the Diamond (1975)-based social marginal value of income, we can define
the Feldstein (1972) distributional characteristics of the tax bases and public goods.

Definition 3 The distributional characteristics ξy of tax bases y(n) = {z(n), c(n)}
based on the Diamond measure of the social marginal value of private income are
given by

ξy ≡ − cov[α(n), y(n)]
∫
N α(n)dF(n)

∫
N y(n)dF(n)

> 0. (13)

ξy is a normalized covariance between a tax base and the welfare weights. It rep-
resents the gain in social welfare (expressed in monetary equivalents and then
divided by the taxed base) of redistributing a marginal unit of resources through base
y(n) = {z(n), c(n)}. The distributional characteristics of the tax bases are positive,
since the covariance between tax base y(n) and the social welfare weights α(n) is
negative. Individuals with higher incomes or consumption levels feature lower wel-
fare weights because the social marginal utility of income is diminishing in income or
consumption due to diminishing privatemarginal utility of income. The positive distri-
butional characteristic ξy therefore implies that redistribution through taxing income
or consumption yields distributional benefits. A stronger social desire for redistribu-
tion or greater inequality in the skill distribution raise the distributional characteristic.
Since ξy is a positive normalized covariance, it ranges between one and zero. ξy = 0 is
obtained either if the government is not interested in redistribution because it attaches
the same social welfare weights α(n) to all individuals or if the base y(n) is the same
for all n so that there is no inequality.

12 Often, scholars refer to the multiplier on the government budget constraint η as the ‘marginal cost of
public funds’. Labeling η as the marginal cost of funds is generally not correct, since η does not measure
the increase in social welfare of an additional unit of public funds relative to the increase in social welfare
of an additional unit of private funds. η is only equal to the marginal cost of public funds in the case where
the private marginal utility of income λ(n) is constant and equal to unity and income effects in behavior are
absent. In that case, it is easily shown that the tax optimum features η = 1.
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Definition 4 Thedistributional characteristic of the public goodbasedon theDiamond
measure of the social marginal value of private income is

ξG ≡ −
cov

[
α(n),

uG (·)
uc(·)

]

∫
N α(n)dF(n)

∫
N

uG (·)
uc(·) dF(n)

. (14)

The distributional characteristic for the public good ξG is the negative normalized
covariance between the social marginal valuation of income α(n) and the marginal
willingness to pay for the public good uG

uc
. ξG > 0 if the public good mainly benefits

the rich, who feature the lowest social welfare weights α(n), and vice versa. ξG = 0
if the government is not interested in redistribution and attaches the same welfare
weights α(n) to all individuals or if all individuals benefit equally from the public
good, i.e., uG

uc
is equal for all n.

The next Lemma derives the marginal excess burden of the income or consumption
tax. The excess burdenmeasures the reduction in social welfare, measured inmonetary
units, expressed as a fraction of the tax base, of raising the distortionary income or
consumption tax.

Lemma 1 The marginal excess burden for the income tax and the consumption tax
are given by

MEBt = − t

1 − t
ε̄clt , MEBτ = − τ

1 + τ
ε̄ccτ . (15)

Proof The welfare effect of a rise in the tax rate is evaluated, while public goods pro-
vision remains constant. A rise in the tax rate is considered, while each individual n
receives a individual-specific lump-sum transfer s(n) so as to keep its utility constant.13

The excess burden is equal to the resulting loss in tax revenue, which is summed over
all individuals. To determine the excess burden of the income tax, assume that τ = 0.
The change in taxes dt and lump-sum income ds(n) for each individual n should keep
utility constant: dv(n) = λ(n)ds(n) − λ(n)nl(n)dt = 0. Hence, ds(n) = nl(n)dt for
all n. Public revenue changes according to dRn ≡ − ds(n) + nl(n)dt + tn ∂lc(n)

∂t dt =
tn ∂lc(n)

∂t dt for all n. Since utility remains constant, changes in labor supply are com-

pensated changes. Rewriting yields a revenue loss of dRn = t
1−t nl(n)

∂lc(n)
∂t

1−t
l(n)

dt for

each individual n. Summing dRn
dt over all individuals, and dividing by taxable income

N
∫
N nl(n)dF(n), yields the marginal excess burden as a fraction of taxed income:

MEBt ≡ −
∫
N

dRn
dt dF(n)

∫
N nl(n)dF(n)

= − t

1 − t
ε̄clt . (16)

Recall that the bar indicates an income-weighted elasticity. Using similar steps and
setting t = 0 gives the marginal excess burden of the consumption tax as a fraction of
taxed consumption:

13 Of course this instrument does not exist, since it boils down to an individualized lump-sum tax. However,
this thought-exercise allows to calculate the excess burden of the tax.
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MEBτ ≡ −
∫
N

dRn
dτ dF(n)

∫
N c(n)dF(n)

= − τ

1 + τ
ε̄ccτ . (17)

��
Using Definitions 2, 3, 4, and Lemma 1, Proposition 1 characterizes optimal tax

policies and public goods provision under the Diamond measure for the marginal cost
of public funds, while assuming that the consumption tax is normalized to zero. Each
tax instrument has its own marginal cost of public funds. Therefore, MCFg and MCFt
are introduced to denote the marginal cost of public funds of the lump-sum tax and
the tax rate, respectively, see also Sandmo (1998).

Proposition 1 Under the Diamond-based MCF definition, and the consumption tax
normalized to zero, the optimal rules for public goods provision and the linear income
tax are given by

(1 − ξG)N
∫

N
uG(·)
uc(·) dF(n) = (1 − γt ε̄

c
lG) · p, (18)

MCFg = 1, (19)

MCFt = 1 − ξz

1 + t
1−t ε̄

c
lt

= 1 − ξz

1 − MEBt
, (20)

MCF = MCFg = MCFt = 1. (21)

Proof Equation (7) is simplified by setting τ = 0 and substituting Eq. (12) to
find Eq. (19). Equation (8) is simplified by using Eq. (13), the Slutsky equation
∂lu(n)

∂t = ∂lc(n)
∂t − nl(n)

∂l(n)
∂g , and setting τ = 0 to find the first part of Eq. (20).

The second part follows from substituting Eq. (15). Equation (10) is simplified by
using Eq. (14), the Slutsky equation ∂lu(n)

∂G = ∂lc(n)
∂G + uG

λ(n)
∂l(n)
∂g , setting τ = 0, and

using γt ≡ Nt
∫
N nl(n)dF(n)/pG to find Eq. (18). ��

Equation (18) is the modified Samuelson rule for the optimal provision of public
goods. The modified Samuelson rule equates the sum of the marginal social benefits
to the marginal social costs of providing the public good. The benefits—the sum of
the marginal rates of substitution N

∫
N

uG
uc
dF(n)—are deflated by the distributional

characteristic of the public good ξG . If poor individuals value the public good more
(less) than rich individuals do, then ξG < 0 (ξG > 0), and the level of public goods pro-
vision increases (decreases)—ceteris paribus. The right-hand side gives the marginal
cost of providing the public good. The main result of this paper is that the cost side of
the Samuelson rule does not include a measure for the marginal cost of public funds
MCF. Indeed, there should be no correction for the marginal cost of public funds on
the cost side of the modified Samuelson rule, since MCF=1 at the optimal tax system.
Consequently, tax distortions do not affect the decision rule for the optimal supply of
public goods.14 Providing public goods may reduce (exacerbate) preexisting labor tax

14 Although the decision rule does not contain a correction for the marginal cost of public funds in second-
best, the level of public goods provision is generally different, since the allocations are not identical in first-
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distortions if public goods boost (reduce) compensated labor supply, i.e., if ε̄clG > 0
(< 0). Hence, by overproviding (underproviding) public goods compared to the first-
best rule, the government alleviates the distortions of labor tax in the labor market, but
this comes at the cost of inefficiencies in public goods provision, see also Atkinson and
Stern (1974). γt ≡ Nt

∫
N z(n)dF(n)/pG denotes the share of public goods that is

financed with distortionary taxes. γt captures the importance of reducing labor market
distortions compared to introducing inefficiencies in public goods provision.

Equation (19) demonstrates that, at the optimal tax system, the marginal cost of
public funds for the lump-sum tax (MCFg) is always equal to one. The reason is
that the lump-sum tax does neither cause deadweight losses nor have distributional
gains (losses). Indeed, there is a zero covariance between the lump-sum tax g and the
social welfare weights α(n), so that the distributional characteristic ξ for the lump-
sum tax is zero. The marginal cost of public funds being equal to one is, therefore,
merely a statement that the tax system is optimal: one unit of resources should be
equally valuable in the private as in the public sector. Thus, the government should be
indifferent between transferring funds from the public to the private sector.

Equation (21) shows that the marginal cost of public funds for all tax instruments
should be equalized at the optimal tax system. Hence, the marginal cost of public
funds for the income tax should be equal to the marginal cost of public funds for
the lump-sum tax. Therefore, from Eq. (20) it follows that the marginal deadweight
losses of income taxes should be exactly equal to the marginal distributional gains of
income taxes: MEBt = − t

1−t ε̄
c
lt = ξz . The marginal excess burden of a distorting tax

rate (expressed in monetary units, as a fraction of taxed income) exactly equals the
marginal benefits of redistribution (expressed in monetary units, as a fraction of taxed
income).15 The more society cares about distribution, the larger is ξz , and the higher
is the optimal income tax. The more elastically labor supply responds to taxes, the
larger is − ε̄clt , and the lower is the optimal income tax. This is the standard trade-off
between equity and efficiency.

From Eq. (21) follows that the government is indifferent between using non-
distortionary and distortionary marginal sources of finance at the tax optimum. There
should be no correction of the modified Samuelson rule in Eq. (18) if the public good
is financed at the margin with the lump-sum tax, since there is no deadweight loss
involved (and no distributional gains either). However, neither should it contain a cor-
rection if themarginal source of finance for the public good is the distortionary tax. This
is an application of the envelope theorem: The deadweight loss of a marginally higher
tax exactly cancels against the distributional gain of the tax if the tax system is optimal.

Footnote 14 continued
and second-best. Therefore, one cannot conclude that tax distortions do not affect the second-best level of
public goods provision.
15 Gahvari (2014) suggested that MCF=1 is a definition rather than a result in this setting. This is not
correct, since MCF=1 is an optimality condition, not a definition. Outside the tax optimum, the marginal
cost of public funds for the lump-sum tax does not equal one (i.e., MCFT 	= 1) if the average social
marginal value of private income (

∫
N α(n)dF(n)) is unequal to the social marginal value of public income

(η). Similarly, outside the optimum, the marginal cost of public funds for the distortionary income tax is
not equal to one if the marginal distributional benefits (ξz ) are not equal to marginal deadweight losses
− t

1−t ε̄lt . See also the section on sub-optimal taxation.
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The marginal cost of funds for the income tax is directly related to the marginal
excess burden of the tax if redistributional concerns are absent (ξz = 0): without
distributional concerns the MCF is exactly equal to the inverse of 1 − MEB. This
confirms earlier literature suggesting an explicit link between the marginal cost of
public funds and the excess burden of taxation, see also Pigou (1947), Harberger
(1964), and Browning (1976). Indeed, at low levels of taxation, the marginal cost of
public funds can be approximated by: MCF 
 1+MEB. In Mirrlees (1971) analyses,
however, the government only introduces distortionary taxes if doing so contributes to
equality (i.e., if taxing labor income yields distributional benefits). With distributional
concerns, ξz > 0, and MCFt is lowered, as Eq. (20) reveals.

If the government would not be interested in income redistribution (i.e.,
ξz = ξG = 0), distortionary income taxes would be optimally zero (t = 0); see
Proposition 1. Thus, in the absence of a preference for redistribution, all public goods
would be financedwith non-distortionary non-individualized taxes. Tax distortions are
introduced only for redistributional reasons, not for public goods provision. Therefore,
the marginal excess burden of the income tax is the price of equality and not the price
of public goods provision.

The next Proposition demonstrates that all results remain valid using a different tax
normalization, where consumption rather than income is taxed.

Proposition 2 Under the Diamond-based MCF definition, and with the income tax
normalized to zero, the optimal rules for public goods provision and the linear con-
sumption tax are given by

(1 − ξG)N
∫

N
uG(·)
uc(·) dF(n) = (1 − γτ ε̄

c
cG) · p, (22)

MCFg = 1, (23)

MCFτ = 1 − ξc

1 + τ
1+τ

ε̄ccτ
= 1 − ξc

1 − MEBτ

, (24)

MCF = MCFg = MCFτ = 1. (25)

Proof Equation (7) is simplified by setting t = 0 and substituting Eq. (12) to
find Eq. (23). Equation (8) is simplified by using Eq. (13), the Slutsky equation
∂cu(n)

∂τ
= ∂cc(n)

∂τ
− c(n)

∂c(n)
∂g , and setting t = 0 to find the first part of Eq. (24).

The second part follows from substituting Eq. (15). Equation (10) is simplified by
using Eq. (14), the Slutsky equation ∂cu(n)

∂G = ∂cc(n)
∂G + uG

λ(n)
∂c(n)
∂g , setting t = 0, and

using γτ ≡ Nτ
∫
N c(n)dF(n)/pG to find Eq. (22). ��

Proposition 2 demonstrates that the marginal cost of public funds measures are
independent from the particular normalization of the tax system. At the optimal tax
system, the marginal cost of public funds remains equal to one for all tax instruments,
as shown in Eqs. (23) and (25). Equation (24) derives that the excess burden of the
consumption tax equals its distributional gain: MEBτ = − τ

1+τ
ε̄ccτ = ξc. Moreover,

the characterization of the optimal policy rule for public good provision in Eq. (22) is
independent from the particular tax normalization.
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Although the characterization of the optimal policy rules does not depend on the
normalization of the tax system, the marginal excess burdens of consumption and
income taxes—as defined in Lemma 1—are not quantitatively identical in the absence
of distributional concerns (ξz = ξc = 0): MCFt = (1 − MEBt )

−1 	= MCFτ =
(1 − MEBτ )

−1, see also Håkonsen (1998). The explanation for the difference in
the MCF measures is that at identical allocations, the marginal excess burdens are
expressed as fraction of a different tax base (income or consumption). However, both
tax instruments have equal marginal excess burdens in absolute terms. This issue is
moot once distributional concerns are included in the analysis. The reason is that both
the marginal excess burden and marginal distributional gains are expressed as frac-
tions of the same tax base. Consequently, the normalization of the excess burdens or
distributional benefits of a tax with a particular tax base has become immaterial if
taxes are optimized.

The next Proposition derives a special case for a separable and quasi-linear utility
function in which the first-best Samuelson rule for public goods provision is obtained
in second-best settings with distortionary taxation.16

Proposition 3 If utility is given by u(n) ≡ c(n)−v(l(n))+�(G), v′, �′ > 0, v′′ > 0,
�′′ ≤ 0, then the optimal provision of public goods follows the first-best Samuelson
rule in second-best settings with optimal distortionary taxation:

N
∫

N
uG(·)
uc(·) dF(n) = p. (26)

Proof The first-order condition for labor supply is given by v′(l(n)) = (1−t)n
(1+τ)

,∀n.
Therefore, εclG = 0. Furthermore, uG

uc
= �′(G) is independent from skill n, hence,

ξG = 0. Substitution of εclG = 0 and ξG = 0 in Eq. (18) yields the result. ��

This simple, special case demonstrates why it is misleading to ignore distributional
concerns in the analysis of the marginal cost of public funds. When distributional
concerns are ignored, the cost side of the Samuelson rule would include a measure for
the deadweight loss of taxation, whereas the distributional benefits of the distortionary
tax would be ignored. A first-best Samuelson rule is found in a second-best setting for
two reasons. First, the public good does not increase or decrease compensated labor
supply. Therefore, the public good cannot be used to alleviate the tax distortions on
labor supply. Second, the public good does not affect the welfare distribution, since
every individual benefits to an equal extent from the public good. Indeed, the public
good is a perfect substitute for the lump-sum cash transfer g. Since the provision of the
public good neither affects efficiency nor equity, provision of the public good should
follow the first-best policy rule.

16 Note that in this particular case it does not matter how one defines the marginal cost of public funds,
since the traditional and the Diamond measures of MCF are identical in the absence of income effects.
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3.2 Marginal cost of public funds—the standard approach

This section compares the main findings of this paper to the papers adopting the
standard definition for the marginal cost of public funds, see, e.g., Wilson (1991),
Ballard and Fullerton (1992), Sandmo (1998), and Gahvari (2006). This section shows
that standard MCF measures have three properties: (i) the MCF for lump-sum taxes is
not equal to one; (ii) the MCF of distortionary tax instruments cannot be related to the
excess burden if distributional concerns are absent; (iii) the MCF is highly sensitive
to the normalization of the tax system. It is argued that these properties are caused by
not including income effects on taxed bases in the average social marginal value of
private income.

The traditional measure for the marginal cost of public funds is given in the fol-
lowing definition.

Definition 5 The marginal cost of public funds based on the standard measure of the
private marginal value of private income is given by

MCFs ≡ η
∫
N λ(n)dF(n)

. (27)

The traditional marginal cost of public funds MCFs is the ratio of the social marginal
value of public income η and the average of the private marginal value of private
income λ(n), see, e.g., Wilson (1991), Ballard and Fullerton (1992), Sandmo (1998),
and Gahvari (2006). This MCF measure is not economically appealing, because it
compares the social marginal value of funds in the public sector η (in social ‘utils’)
with the average of the average private marginal value of funds in the private sector∫
N λ(n)dF(n) (in private ‘utils’). While

∫
N λ(n)dF(n) indeed measures the average

increase in private utility, it does not measure the increase in social welfare if all
individuals in the private sector receive an additional euro, because the (welfare-
relevant) income effects on the taxed bases are not included.17

To characterize the optimal tax expressions, the definitions for the Feldstein (1972)
distributional characteristics of the tax bases and public goods are adjusted by using
λ(n) instead of α(n) as the social welfare weights.

Definition 6 The distributional characteristics ξ sy of tax bases y(n) = {z(n), c(n)}
based on the standard measure of the social marginal value of private income are
given by

ξ sy ≡ − cov[λ(n), y(n)]
∫
N λ(n)dF(n)

∫
N y(n)dF(n)

> 0. (28)

17 Of course, this does not mean that one cannot define themarginal cost of public funds as in the traditional
definition, since a definition cannot be wrong in and of itself. However, it is logically impossible that two
mathematically distinct definitions within the samemodel have the same economicmeaning. If the marginal
cost of public funds is supposed to measure social marginal value of additional public resources relative
to the social marginal value of additional private resources, then the traditional measure does not correctly
measure the marginal cost of public funds.
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Definition 7 The distributional characteristic of the public good based on the standard
measure of the social marginal value of private income is

ξ sG ≡ −
cov

[
λ(n),

uG (·)
uc(·)

]

∫
N λ(n)dF(n)

∫
N

uG (·)
uc(·) dF(n)

. (29)

The next proposition replicates Sandmo (1998) and derives optimal tax policies
and public goods provision under the standard measure for the marginal cost of public
funds, while the consumption tax is normalized to zero.

Proposition 4 With the standard MCF definition, and with the consumption tax nor-
malized to zero, the optimal rules for public goods provision and the linear income
tax are given by

(1 − ξ sG)N
∫

N
uG(·)
uc(·) dF(n) = (1 − γt ε̄

u
lG) · MCFs · p, (30)

MCFsg = 1

1 − t
1−t ε̃lg

< 1, ε̃lg ≡
∫

N
εlgdF(n) < 0, (31)

MCFst = 1 − ξ sz

1 + t
1−t ε̄

u
lt

= 1 − ξ sz

1 − MEBt − t
1−t ε̄lg

, (32)

MCFs = MCFsg = MCFst < 1. (33)

Proof Equation (7) is simplified by setting τ = 0 and substituting Eq. (27) to find
Eq. (31). Equation (8) is simplified by using Eq. (28) and setting τ = 0 to find the
first part of Eq. ( 32). The second part of Eq. (32) follows upon substitution of the
Slutsky equation ε̄ult = ε̄clt − ε̄lg and using Eq. (15). Equation (10) is simplified by
using Eq. (29), setting τ = 0, and using γt ≡ Nt

∫
N nl(n)dF(n)/pG to find Eq. (30).

��
Proposition 4 is mathematically equivalent to Proposition 1, since both Proposi-

tions are derived from the same first-order conditions in equations (7)–(10). However,
the difference lies in the economic interpretation of the optimal policy rules in both
Propositions because different definitions for the MCF are adopted.

The most important difference is that the modified Samuelson rule in Eq. (30)
now does have a correction for the standard marginal cost of public funds.18 The
standard measure for the marginal cost of public funds is generally not equal to one
at the optimal tax system. In particular, Eq. (31) shows that the standard measure
for the marginal cost of public funds for the lump-sum tax is always smaller than
one (MCFsg < 1) if there is a positive income tax (t > 0) and leisure is a normal

18 Note also that the uncompensated cross-elasticity of labor supply with respect to public goods ε̄ulG
enters the expression rather than the compensated cross-elasticity. Whereas the uncompensated elasticity
is zero with utility functions exhibiting (weak) separability between public goods and labor (leisure), the
compensated cross-elasticity is generally different from zero and positive for a wide class of utility functions
including the separable ones, see Jacobs (2009).
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good (ε̃lg < 0). Intuitively, transferring an extra unit of funds from individuals to the
government via a larger lump-sum tax generates an income effect in labor supply, and
this raises revenues from the income tax if it is positive (t > 0). Consequently, one
can raise the lump-sum tax by less than one unit to raise one unit of public funds.

The reason why the lump-sum tax does not have a marginal cost of public funds of
unity—as with the Diamond-based measure—is that it compares the social marginal
value of public resources to the private, not the social, marginal value of private
resources. By ignoring the income effects on taxed bases, the average social marginal
value of private income is ‘overestimated’, and, hence, the traditional MCF of lump-
sum taxes is driven down below 1 if income is taxed. However, one would theoretically
expect the lump-sum tax to have a marginal cost of public funds equal to one for three
reasons. First, the lump-sum tax does not cause distortions. Second, the lump-sum tax
does not features distributional effects, in the sense that the normalized covariance
between the social welfare weights λ(n) and the lump-sum tax g is zero. Third, the
social marginal value of both public and private resources should be exactly the same
if taxes are optimized. However, the standard definition suggests otherwise. That the
marginal cost of public funds for lump-sum taxes is not equal to one in the tax optimum
is the first property of the traditional MCF definition.

Furthermore, Eq. (32) gives the marginal cost of public funds for the tax rate
(MCFst ). MCFst depends on the income-weighted uncompensated tax elasticity of
labor supply ε̄ult and the distributional benefits of income taxes ξz . In the absence of
distributional concerns (i.e., ξ sz = 0), Eq. (32) shows that it is not possible to directly
relate the marginal cost of public funds of the distortionary income tax to the marginal
excess burden of the income tax MEB ≡ − t

1−t ε̄lt . However, many papers in the liter-
ature have suggested that the marginal cost of public funds should be a measure of the
welfare costs of taxation in the absence of distributional concerns, see, for example,
Pigou (1947), Harberger (1964) and Browning (1976). However, the sign of ε̄ult is the-
oretically ambiguous due to offsetting income and substitution effects.19 MCFst > 1
is obtained only if the labor supply curve is upward-sloping (ε̄ult < 0). MCFst < 1 if
there is a backward-bending labor supply curve (ε̄ult > 0). The result that the MCF of
a distortionary tax can be smaller than one led to a large literature trying to explain
this counterintuitive finding and to relate it to the marginal excess burden of the tax;
see for example Triest (1990), Ballard and Fullerton (1992) and Dahlby (2008).

Once again, the reason why the standard definition of the marginal cost of public
funds for a distortionary tax cannot be related to the excess burden of the tax is that it
substitutes the average of the privatemarginal value of private income for the average
social marginal value of private income. However, the average privatemarginal value
of private income does not include the income effects on taxed bases. Therefore, these
income effects on taxed bases show up in the denominator for the marginal cost of
public funds of the tax; see Eq. (32). As a result, the marginal cost of funds measure
for the distorting income tax rate is driven down below unity if income is taxed. That
the marginal cost of public funds for a distortionary tax cannot be directly related to

19 Most empirical studies conducted in recent decades suggest a positive value for the uncompensatedwage
elasticity of labor supply, implying that MCFst will exceed one, see, for example, Blundell and MaCurdy
(1999) and Meghir and Phillips (2010).
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the excess burden of taxation in the absence of distributional concerns—and may even
be smaller than one—is the second property of the standard definition.

TheDiamond-based and the standardMCF definitions coincide if income effects on
taxed bases are absent, i.e., ∂l(n)

∂g = ∂c(n)
∂g = 0 so that λ(n) = α(n), see also Eq. (11).

Intuitively, the privatemarginal value of private incomeλ(n) is then a sufficient statistic
for the social marginal value of private income α(n). This special case applies as well
to money metric indirect utility functions, where the marginal utility of income is
constant and equal to one.20

An important strand in the literature has, alternatively, derived the marginal cost
of public funds of a distortionary tax in representative-agent settings in terms of the
compensating variation (CV) and the change in government revenue (dR), see, e.g.,
Ballard (1990), Mayshar (1990), and Håkonsen (1998). In particular, if taxes are
optimized and distributional concerns are absent, the marginal cost of public funds is
equal to:21

MCFst = −CV

dR
= η

∫
N λ(n)dF(n)

. (34)

Online Appendix A shows that −CV
dR is equal to the standard measure of the marginal

cost of public funds in Definition 5. Also this alternative approach to the marginal cost
of public funds needs reconsideration, because it expresses the compensating variation
in terms of theuncompensated change in tax revenue. This is not logical, since theMCF
measure is derived by (implicitly) assuming that individuals are perfectly compensated
if the tax is marginally increased. Consequently, public revenue can only change due
to compensated behavioral responses, while income effects are absent. Therefore, the
compensating variation should be expressed in terms of compensated revenue changes
(dRc), and not in terms of uncompensated revenue changes (dR). If the compensating
variation is expressed in terms of compensated revenue changes, the Diamond-based
measure for the marginal cost of public funds in Definition 2 is found (see online
Appendix A):

MCFt = − CV

dRc
= η

∫
N α(n)dF(n)

. (35)

This is another indication that the Diamond-based measure for the marginal cost of
public funds has more desirable economic properties than the standard measure.

Triest (1990), Håkonsen (1998) and Dahlby (2008) also aim to derive a relationship
between the standardMCFmeasure and themarginal excess burden in models without
distributional concerns. These contributions develop a MCF measure, which adjusts
the MEB with the ratio of the shadow value of public resources in the absence of

20 One requires a non-utilitarian government to have a preference for income redistribution if the private
marginal utility of income is constant, e.g., via a concave transformation of individual utilities or non-
uniform Pareto weights.
21 The analysis is equally applicable to equivalent variations, since compensating variations and equivalent
variations are identical for infinitely small tax changes.
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taxation (η f b, ‘first-best’) and after the introduction of distortionary taxation (ηsb,
‘second-best’). In particular, the relationship is given by: MCFst = (1 + MEBt )

η f b
ηsb

.

The adjustment
η f b
ηsb

captures the increased scarcity of public resources due to (higher)
taxation that is unrelated to the excess burden of taxation. It is implicitly related to
the income effects of (higher) distortionary taxes on taxed bases.22 Like the standard
approach, also this approach still does not yield a direct correspondence between
MCF and MEB, due to the multiplier term

η f b
ηsb

. Moreover, there is no obvious way
to estimate the alternative MCF measure of Triest (1990), Håkonsen (1998), and
Dahlby (2008): The term

η f b
ηsb

is not measurable empirically. The Diamond-based
definition for the MCF—in the absence of distributional concerns—features a direct
correspondence between MCF and MEB and is expressed in empirically measurable
sufficient statistics: compensated elasticities and tax rates.

The next Proposition demonstrates that the standardMCFmeasure is very sensitive
to the normalization of the tax system.

Proposition 5 With the standardMCF definition, and with the income tax normalized
to zero, the optimal rules for public goods provision and the linear consumption tax
are given by

(1 − ξ sG)N
∫

N
uG(·)
uc(·) dF(n) = (1 − γτ ε̄

u
cG) · MCFs · p, (36)

MCFsg = 1

1 − τ
1+τ

ε̃cg
> 1, ε̃cg ≡

∫

N
εcgdF(n) > 0, (37)

MCFsτ = 1 − ξ sc

1 + τ
1+τ

ε̄ucτ
= 1 − ξ sc

1 − MEBτ − τ
1+τ

ε̄cg
, (38)

MCFs = MCFsg = MCFsτ > 1. (39)

Proof Equation (7) is simplified by setting t = 0 and substituting Eq. (27) to find
Eq. (37). Equation (8) is simplified by using Eq. (28), and setting t = 0 to find the first
part of Eq. (38). The second part of Eq. (38) follows upon substitution of the Slutsky
equation ε̄ucτ = ε̄ccτ − ε̄cg and using Eq. (15). Equation (10) is simplified by using
Eq. (29), setting t = 0, and using γτ ≡ Nτ

∫
N c(n)dF(n)/pG to find Eq. (36). ��

Proposition 5 shows that the standard definition for the marginal cost of public
funds is highly sensitive to the normalization of the tax system. Equation (37) reveals
that the marginal cost of public funds for the lump-sum tax is always higher than (or
equal to) one if consumption is taxed. Recall, it is smaller than (or equal to) one if
income is taxed. The reason is that the income elasticity of consumption is positive (if
consumption is a normal good): ε̃cg > 0. If the lump-sum tax is increased (transfer is
reduced), there is a negative income effect in consumption demand, which reduces the
revenue from the consumption tax.With the different tax normalization, income effects

22 This can be seen by taking an approximation of the MCFst :
1

1−MEBt− t
1−t ε̄lg


 1+MEBt + t
1−t ε̄lg =

(1 + MEBt )
η f b
ηsb

. From this follows that
η f b
ηsb


 1 +
t

1−t ε̄lg
1+MEBt

. The approximation is valid if tax rates and
the uncompensated elasticity are not too high.
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on the consumption tax base now make the average social marginal value of private
income larger than the average private marginal value of private income. Therefore,
the standard measure for the marginal cost of public funds is larger. As the income
effect on the taxed base switches in sign, MCFsg switches from a number below one
under income taxation to a number above one under consumption taxation.23

Equation (38) shows that, in the absence of distributional concerns (ξ sc = 0), and no
lump-sum taxes, the marginal cost of funds for the consumption tax is always larger
than one, i.e., MCFsτ > 1, since substitution effects and income effects in consumption
demand are reinforcing rather than offsetting. Although the sign of the MCF measure
is now intuitively correct, its magnitude is not. Since the average private marginal
value of private income ignores the income effects on taxed bases, the traditional
MCF measure overestimates the marginal cost of public funds.

Proposition 5 shows that a different normalization of the tax system therefore pro-
duces completely different marginal cost of public funds measures for both lump-sum
and distortionary taxes even though the optimal second-best allocation is the same
under both normalizations.24 This is the third property of the standard marginal cost
of public funds measures.

The normalization of the tax code explains the findings of Wilson (1991) and
Sandmo (1998). They both suggest that distributional concerns are the reason why the
marginal cost of public funds is smaller than one.However, Proposition 5 demonstrates
that the conclusion would be reversed if consumption is taxed rather than income. In
this case, MCFsg and MCFsτ denote the marginal cost of public funds of the lump-sum
tax and the consumption tax.

To summarize, the standard MCFmeasure has three properties, which are econom-
ically unappealing. First, the marginal cost of public funds for lump-sum taxes is not
equal to one in the tax optimum—irrespective of the normalization of the tax sys-
tem. Hence, the social marginal value of public resources seems to be unequal to the
social marginal value of private resources in the tax optimum. Second, in the absence
of distributional concerns, the marginal cost of public funds for a distortionary tax
instrument cannot be directly related to the excess burden of the tax instrument—
irrespective of the normalization of the tax system. Hence, the MCF measure does not
properly capture the welfare costs of taxation in the absence of distributional concerns.
Third, the MCF measures for both distortionary and lump-sum taxes are shown to be
highly sensitive to the particular normalization of the tax system. From a practical
point of view, all these properties render the applicability of standard MCF measures
in applied policy analysis problematic: which number for the MCF should policy
makers employ?

The properties of the standard definition of theMCF are caused by ignoring income
effects on taxed bases in calculating the social marginal value of private income. By

23 The interpretations of Eqs. (36) and (38) are identical to those of (30) and (32) that appear below
Proposition 1. Hence, these will not be repeated here.
24 The sensitivity of MCFs to the normalization of the tax system was already pointed out by Atkinson
and Stern (1974) without using the MCF terminology, however. In particular, MCFs can be shown to be
bigger (smaller) than one if consumption goods (factor supplies) are taxed, and factor supplies (consumption
goods) are not taxed.
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including the income effects on taxed bases in the social marginal value of private
income, Sect. 3.1 has shown that (i) the marginal cost of public funds for lump-sum
taxes always equals one in a tax optimum; (ii) there exists an explicit and direct link
between the marginal cost of public funds and the excess burden of taxation (in the
absence of distributional concerns), and (iii) MCF measures are not sensitive to the
normalization of the tax system.

3.3 Sub-optimal taxation

To conclude the discussion on linear taxation, this section explores to what extent
the results are driven by allowing for heterogeneous agents and non-individualized
lump-sum transfers. To that end, suppose that the government cannot optimize the
lump-sum tax. Then, the government has to resort to distortionary taxation as the
marginal source of finance for public goods. For brevity, this section only discusses
income taxation. The following Proposition derives optimal policy for any level of
lump-sum taxation.25

Proposition 6 Under the Diamond-based MCF definition, the lump-sum tax exoge-
neously given, and the consumption tax normalized to zero, the optimal rules for public
goods provision and the marginal cost of public funds are given by

(1 − ξG)N
∫

N
uG(·)
uc(·) dF(n) = (1 − γt ε̄

c
lG) · MCFt · p, (40)

MCFt = 1 − ξz

1 + t
1−t ε̄

c
lt

= 1 − ξz

1 − MEBt
� 1. (41)

Proof This result follows immediately from Proposition 1. ��
The modified Samuelson rule in Eq. (40) now features a correction

(MCFt = 1−ξz
1−MEBt

) for the marginal cost of public funds of the income tax. Even
when lump-sum taxes are unavailable, one can not conclude that the marginal cost of
public funds for distortionary taxation is necessarily larger than one. This depends on
both the excess burden of the income taxMEBt and the distributional benefits ξz of the
income tax. If the income tax is sub-optimally low (high) from a distributional perspec-
tive (i.e., ξz > (<)MEBt ), then the marginal cost of public funds is smaller (bigger)
than one, i.e., MCFt < 1 (> 1), and optimal public goods provision is larger (smaller),
everything else equal. Intuitively, if MCFt < 1, the government over-provides public
goods—relative to the second-best rule with optimized transfers—to compensate for
the sub-optimal income redistribution by the income tax (and vice versa ifMCFt > 1).

The representative-agent models are nested as a special case of the model where
lump-sum taxes are excluded and the distributional effects of taxation or public goods

25 If the marginal source of public finance is the lump-sum tax, and the government simultaneously
optimizes the lump-sum tax and public goods, for a given level of the income tax, then the marginal cost of
public funds is one. In that case, there should be no correction of the modified Samuelson rule. This follows
trivially from Proposition 1.
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are absent (ξz = ξG = 0). In that particular case, the marginal cost of public funds is
unambiguously larger than one, since MCFt = 1

1−MEBt
> 1. Consequently, only in

this specific case, distortionary taxation unambiguously lowers public goods provision
compared to the first-best rule. However, this case is of limited practical interest for
the simple reason that if everyone would be identical, everyone would prefer non-
individualized lump-sum taxes over distortionary income taxes tofinancepublic goods.

If tax systems are not optimized because lump-sum taxes are not available, the
Samuelson rule in Eq. (40) is modified compared to the first-best rule. Four additional
factors appear in second-best settings with distortionary taxation: (i) interactions of
the public good with distorted labor supply (ε̄clG), (ii) distributional benefits (or costs)
of the public good (ξG), (iii) distortions of the financing of the public good, i.e.,
the marginal excess burden of distortionary taxation (MEBt ), and (iv) distributional
benefits of the financing of the public good (ξz). Only if non-individualized lump-
sum taxes are available and taxes are optimized, the distributional gains equal the
deadweight losses of financing the public good, so that MEBt = ξz , and effects (iii)
and (iv) cancel from Eq. (40).

4 Nonlinear taxation

The analysis has so far been confined to linear policy instruments. In the real world,
however, most tax systems are nonlinear. This short section extends the model to allow
for nonlinear income taxation, as in Mirrlees (1971).26 In doing so, previous literature
is extended and amended by analyzing optimal taxation and public goods provision
with preference heterogeneity (as in the linear case). By using a perturbation of the
optimal tax schedule, all major findings derived under linear policies are shown to
carry over to nonlinear policies.

In particular, let the nonlinear tax schedule be denoted by T (z(n)), where
T ′(z(n)) ≡ dT (z(n))/dz(n) denotes the marginal income tax rate at income z(n).
The tax function is assumed to be continuous and differentiable. Proposition 7 derives
the marginal cost of public funds under optimal nonlinear income taxation using a
tax perturbation. Online Appendices B and C to this paper provide mathematically
rigorous proofs. Moreover, online Appendices B and C derive the optimal nonlinear
tax schedule, the modified Samuelson rule, and provides an elaborate discussion of
the consequences of preference heterogeneity for optimal public good provision.

Proposition 7 The marginal cost of public funds is equal to one under optimal non-
linear income taxation:

MCF ≡ η
∫
N

(
λ(n) + ηnT ′(z(n))

∂l(n)
∂(−T (0))

)
dF(n)

= 1. (42)

Proof Consider a small tax perturbation where the intercept of the tax function
T (0) is marginally raised such that it raises one unit of income from all taxpay-
ers. This tax reform has the following three effects. First, the government gains a

26 Consumption taxes are normalized to zero. The reverse normalization gives identical insights.
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marginal unit of resources per capita. Second, this policymechanically decreases social
welfare—measured in monetary equivalents—for each individual by λ(n)

η
. Third, a

smaller −T (0) generates behavioral changes on labor supply. Since marginal tax
rates are unaffected by this policy reform, substitution effects are zero and only the
income effects matter. The income effect on labor supply changes tax revenues by
T ′(z(n))

∂z(n)
∂(−T (0)) = T ′(z(n))n ∂l(n)

∂(−T (0)) for each individual. The total change in social
welfare should be zero if the intercept of the tax function is optimized:

N
∫

N

(
λ(n)

η
+ nT ′(z(n))

∂l(n)

∂ (−T (0))

)

dF(n) = N . (43)

Rewriting yields Proposition 7. ��

The marginal cost of public funds is also one under optimal nonlinear taxation.
Intuitively, the government has acces to a non-distortionary marginal source of public
finance: The intercept of the tax function T (0). −T (0) is equivalent to the non-
individualized lump-sum transfer g under linear taxation. The government lowers the
intercept of the tax function −T (0), i.e., it provides all individuals with more income,
until the marginal utility of private income plus income effects (α(n)) are on average
equal to its marginal cost in terms of revenue (η). Hence, if the tax system is optimized,
the government is indifferent to a marginal redistribution of income from the public
to the private sector. In an optimal tax system, the marginal cost of public funds for all
distortionary marginal tax rates T ′(z(n)) should then be equal to the marginal cost of
public funds for the non-distortionary tax T (0). Thus, tax distortions should be equal
to distributional gains for marginal tax rates at each point in the income distribution.

Online Appendix B shows that the expression for the optimal provision of public
goods under nonlinear taxation is the same as Eq. (18) for optimal public goods
provision under linear taxation, except for a correction for nonlinear marginal tax
rates in the γt term. Online Appendix B further shows that the expression for the
optimal nonlinear income tax is the same as in Mirrlees (1971) and Saez (2001). Both
will not be discussed further here.

5 Discussion

5.1 Instrument set

Some may question whether in the real world governments have in fact access to non-
distortionary lump-sum taxes as a marginal source of public finance due to practical
or even legal problems in implementing such taxes. However, from a theoretical point
of view, the lump-sum part of the tax system generally consists of subsidies (i.e.,
transfers) to individuals. So, even if one likes to rule out non-individualized lump-sum
taxes, it is certainly feasible to marginally reduce lump-sum transfers. Moreover, most
real-world tax systems entail a general tax credit or a general tax exemption, which
acts as a lump-sum subsidy and can be (and often is) changed by policymakers without
running into all kinds of practical or legal obstacles. Hence, this paper’s assumption
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that non-individualized lump-sum transfers are a marginal source of public finance
can be defended on both theoretical and empirical grounds.

5.2 Kaplow and sub-optimal taxation

Kaplow (1996, 2004, 2008) argues that, even if the tax system is not optimal, neither
distributional concerns nor incentive effects of the financing of public goods with dis-
tortionary taxes should be included in the discussion of second-best policy analysis.27

In this argument, the government simultaneously does two things: (i) it changes the
provision of the public good, and (ii) it applies a benefit-absorbing change in the non-
linear tax schedule that fully extracts each individual’s willingness to pay for the public
good. Given that the utility function is identical across agents and weakly separable,
this tax change does not affect incentives to supply labor. Since the tax adjustment
perfectly imitates a pure benefit tax, the first-best Samuelson rule can be used to judge
whether public goods provision should increase or not, without making corrections
for the marginal cost of public funds.

Kaplow’s approach has a number of disadvantages. First, preferences must be
weakly separable and identical, otherwise the benefit-absorbing change in the nonlin-
ear tax schedule is generally not incentive compatible, and cannot be implemented as
a result, see also Laroque (2005) and Gahvari (2006). Second, while the tax system
is not assumed to be optimal, the nonlinear income tax schedule is flexible enough to
perfectly off-set any distributional effect of public good provision at each income level.
However, if there are binding constraints make the nonlinear tax schedule sub-optimal,
the very same constraints may prevent the implementation of the benefit-absorbing
tax changes. Third, Kaplow’s analysis cannot be readily generalized to linear tax
schedules, because linear taxes generally do not neutralize all distributional effects of
public goods—except in the knife-edge case where the benefits of public goods are
proportional in income. Fourth, in real-world policy making, changes in the provision
of public goods generally occur without neutralizing the distributional effects with
benefit-absorbing changes in the tax system (Gahvari 2006).

This paper avoided these disadvantages by analyzing public good provision and
income taxation with non-separable and heterogeneous preferences, allowing for both
linear and nonlinear tax schedules, and without adjusting the (linear or nonlinear) tax
schedules to fully neutralize the distributional impact of public goods. It demonstrated
that the marginal cost of public funds should not be present in the modified Samuelson
rule for public goods provision. Intuitively, if the tax system is optimized, a marginal
change in distortionary taxes to finance public goods produces exactly offsetting dis-
tortions and distributional gains. This envelope property of optimal taxes explains
why this result generalizes to non-separable and heterogeneous preferences, linear
and nonlinear tax systems, and without the need to implement benefit-absorbing tax
changes.

27 Laroque (2005) and Gauthier and Laroque (2009) contain similar ideas and provide rigorous proofs of
this claim.

123



The marginal cost of public funds is one… 907

5.3 Implications for other public policies

The results of this paper have larger relevance to other public policies than public
goods provision. First, Jacobs andBoadway (2014) analyze optimal linear or nonlinear
commodity taxes jointly with optimal nonlinear income taxes in the frameworks of
Atkinson and Stiglitz (1976) andMirrlees (1976). They show that the marginal cost of
public funds—based on Diamond’s social value of income—remains equal to one in
the full tax optimum. Hence, distortions from commodity taxation do not drive up the
marginal cost of public funds above one if income and commodity taxes are optimized.

Second, Kleven and Kreiner (2006) extend the literature on the marginal cost of
public funds—based on the traditional definition—to account for extensive-margin
distortions in labor supply, besides intensive-margin distortions. They argue that par-
ticipation distortions tend to raise the marginal cost of public funds. However, Jacquet,
Lehmann and Van der Linden (2013) merge the Mirrlees model of optimal income
taxation with labor supply on the intensive margin with Diamond (1980)’s model of
optimal income taxationwith labor supply on the extensivemargin. Jacobs et al. (2017)
follow their analysis and demonstrate that in this model the marginal cost of public
funds is once more equal to one in the tax optimum if the Diamond-based measure for
the marginal costs of public funds is employed. Participation distortions are therefore
not a reason why the marginal cost of public funds would rise above one in the tax
optimum.

Third, Sandmo (1975), Bovenberg andDeMooij (1994) andBovenberg andVan der
Ploeg (1994) show that the optimal corrective tax is driven below the Pigouvian level
if the marginal cost of public funds is larger than one. Intuitively, providing environ-
mental quality directly competes with provision of ordinary public goods. Jacobs and
deMooij (2015) analyze optimal corrective taxes alongside optimal linear and nonlin-
ear income taxes in the models of Atkinson and Stiglitz (1976) and Mirrlees (1976),
which are extended with externalities. They demonstrate that the marginal cost of pub-
lic funds is equal to one in the tax optimum with optimal corrective taxation. Hence,
it is generally incorrect to set optimal corrective taxes below Pigouvian levels even in
second-best settings with distortionary taxes. Consequently, governments should not
pursue less ambitious environmental policies if tax rates are high, as Sandmo (1975)
and Bovenberg and De Mooij (1994) suggested.

Fourth, Barro (1979) and Lucas and Stokey (1983) show that under distortionary
taxation Ricardian equivalence breaks down, and debt-financing and tax financing of
public spending cease to be equivalent. Since tax distortions are convex in tax rates,
it is better to smooth tax rates over time, rather than having time-varying tax rates.
Therefore, public debt should optimally be used to smooth tax rates over time.Werning
(2007), however, demonstrates that ignoring distributional concerns to motivate tax
distortions has fundamental consequences for the theory of optimal debt management.
The reason is that, at themargin, the government always has access to non-distortionary
sources of finance (i.e., non-individualized lump-sum transfers). Werning (2007)’s
analysis implies that the marginal cost of public funds is equal to one at all times
if governments optimize tax systems, see also Jacobs (2009). As a result, debt and
(lump-sum) tax financing are equivalent, Ricardian equivalence is restored, and the
optimal path of public debt becomes indeterminate.
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Fifth, if themarginal cost of public funds is equal to one, revenue-raising instruments
(such as taxes) are not superior to revenue-neutral instruments (such as regulation), or
to revenue-reducing instruments (such as subsidies) if resources are valued equally at
the margin in the public and the private sector. Hence, one needs to include additional,
instrument-specific constraints into the analysis in order to assess the desirability of
revenue-raising over revenue-neutral or revenue-reducing policy instruments. There-
fore, theories on optimal regulation and procurment that rely on a marginal cost of
funds larger than one need reconsideration, see, e.g., Laffont and Tirole (1993).

5.4 Social cost–benefit analysis

A common practice to add, say, 50 cents for every dollar spent on a public project
to account for tax distortions, but completely ignoring the distributional benefits of
tax instruments at the same time, is incorrect, see for example Heckman et al. (2010).
Such practice is bound to yield policy errors, because many public projects can now
fail the social cost–benefit test, whereas they could be socially desirable. It is prob-
ably most practical not to make corrections for the marginal cost of public funds in
social cost–benefit analysis.28 Tax distortions cancel out against distributional gains
if taxes are optimally set, which renders the marginal cost of public funds equal to
one. Alternatively, if one does not want to assume that taxes are optimally set, then not
only the deadweight costs of taxation, but also the distributional benefits of taxation
should be included in social cost–benefit analysis. See also Sect. 3.3 on sub-optimal
taxation.

To justify setting the marginal cost of public funds equal to one in social cost–
benefit analysis, policy makers may invoke Becker (1983)’s efficient redistribution
hypothesis, which argues that the political system should achieve an outcome in which
all opportunities for political gains to redistribute incomes are exhausted.Alternatively,
onemay invoke the principle of insufficient reason, since the calculation of deadweight
costs and distributional benefits of taxation is fraught with difficulties. In particular, if
tax systems are not considered to be optimal, a social cost–benefit requires estimates
of both the marginal distortions and the marginal distributional benefits of the taxes
that are used to finance the public project. It is in principle possible to estimate the
deadweight losses of taxation, even though uncertainties in deadweight loss estimates
can be substantial. The estimation of the distributional benefits of taxation, however,
is a hazardous task for any policy analyst, since this inevitably involves political
judgments about the desirability of income redistribution from which policy analysts
should preferably abstain.29

28 The Dutch government recently decided to set MCF=1 in social cost–benefit analyses for public
projects in the Netherlands (Dutch Government 2016–2017). This policy decision was based on the advice
of an official working group of which the author of this paper was a member. The current paper provided
the scientific input in reaching the government’s decision, see Werkgroep Kosten van Belastingheffing en
MKBAs (2016–2017).
29 Indeed, any policy analyst claiming that the marginal cost of public funds is necessarily larger than one
is merely revealing his/her political preferences for income redistribution: apparently the deadweight losses
of taxation are always considered to be larger than his/her perceived benefits of redistribution.
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6 Conclusion

This paper analyzed the simultaneous setting of optimal taxes and the provision of
public goods in standard optimal tax models with heterogeneous agents having het-
erogeneous preferences. Both optimal linear and nonlinear tax schedules are analyzed.
It has been demonstrated that tax distortions are the ultimate result of redistributional
concerns. Using Diamond (1975)’s definition for the social marginal value of private
income, which includes policy-induced income effects on tax bases, the marginal cost
of public funds at the optimal tax system is shown to be one, for optimal linear and
nonlinear taxes, and for income and consumption taxes. At the optimal tax system,
the marginal cost of public funds for all tax instruments should be equalized. Hence,
the marginal cost of public funds for distortionary taxation equals the marginal cost
of public funds for non-distortionary taxation, which equals one. The distributional
benefits of distortionary tax rates are therefore equal to the marginal excess burden of
tax rates. The modified Samuelson rule is derived using general preference structures.
It is demonstrated that the marginal cost of public funds does not determine optimal
public goods provision under optimal taxation. Modified Samuelson rules for public
good provision under linear and nonlinear taxation are identical.

Applied policy economists should therefore use the marginal excess burden as the
social cost of income redistribution, and the marginal cost of public funds as the social
cost of financing public activities that are unrelated to income redistribution. It should
be remembered that the marginal cost of public funds of a distortionary tax does
not only capture the deadweight loss of a distortionary tax, but also its distributional
benefits. When tax systems are not optimal, the marginal cost of public funds could
either be smaller or larger than one, depending on whether the distributional benefits
are smaller than the marginal excess burden of distortionary taxes.

This paper followed common practice in the second-best literature by assuming
that the government is a benevolent social planner and markets are Pareto-efficient
in the absence of government intervention. Government failure could explain why
taxes and public goods are not set at second-best optimal levels. Moreover, not only
governments, but also markets can fail. The main lesson of this paper is that without
explicitly incorporating the fundamental reasons why governments or markets fail
into the analysis, it is premature to conclude that the marginal cost of public funds
lies above or below one. In future research, the marginal cost of public funds should
be derived in settings where market or government failure is explicitly modeled from
first principles and not derived from ad hoc constraints.
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