
Online Appendix: The Marginal Cost of Public Funds is One

at the Optimal Tax System

Bas Jacobs∗

December 18, 2017

A Marginal cost of public funds in terms of compensating vari-

ations

This Appendix shows that the traditional and Diamond-based marginal cost of funds can be

written as a function of the compensating variation and the uncompensated and compensated

revenue changes of a marginal tax change. The proof assumes that the consumption tax is

normalized to to zero. Moreover, the government has no preference for income redistribution

(ξst = 0).

Under the standard approach, the first-order condition of the marginal tax rate can be

written as (using ξst = 0):

MCF st =
η∫

N λ(n)dF (n)
=

1

1 + t
1−t ε̄

u
lt

. (44)

By using the properties of the indirect utility function v(t, τ, g,G, n), the compensating variation

CV (n) for individual n due to a marginal tax increase dt as (at τ = 0) can be written as:

CV (n) = −z(n)dt. (45)

The total compensating variation is given by:

CV ≡
∫
N
CV (n)dF (n). (46)

From the government budget constraint follows the uncompensated change in revenue (note

that τ = 0):

R ≡
∫
N
tz(n)dF (n)− g − pG/N, (47)

dR =

(
1 +

t

1− t
ε̄ult

)∫
N
z(n)dF (n)dt. (48)
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Hence, the first part of the proof is found:

MCF st =
η∫

N λ(n)dF (n)
=

1

1 + t
1−t ε̄

u
lt

= −CV
dR

. (49)

The first-order condition for the optimal tax rate can also be written in terms of the

Diamond-based measure for the marginal cost of public funds:

MCFt =
η∫

N α(n)dF (n)
=

1

1 + t
1−t ε̄

c
lt

. (50)

The compensating variation for individual n is the same as above:

CV (n) = −z(n)dt. (51)

From the government budget constraint follows that the compensated change in revenue is given

by:

dRc =

(
1 +

t

1− t
ε̄clt

)∫
N
z(n)dF (n)dt. (52)

Hence, the second part of the proof is found:

MCFt =
η∫

N α(n)dF (n)
=

1

1 + t
1−t ε̄

c
lt

= −CV
dRc

. (53)

B Non-linear tax instruments

This Appendix derives optimal policies with non-linear taxes. We assume that income is taxed

and the consumption tax is normalized to zero. The non-linear tax schedule is given by T (z(n)),

where T ′(z(n)) ≡ dT (z(n))/dz(n) denotes the marginal income tax rate at income z(n). The

tax function is assumed to be continuous and differentiable. The government can only verify

total income of an individual (z(n) = nl(n)), not its labor supply l(n) or ability n, which rules

out individualized lump-sum taxes. The individual budget constraint is modified to:

c(n) = z(n)− T (z(n)), ∀n. (54)

The first-order condition for labor supply of each individual under non-linear income taxation

reads as
−ul(c(n), l(n), G, n)

uc(c(n), l(n), G, n)
= (1− T ′(z(n)))n, ∀n. (55)

This first-order condition is the same as before, see equation (3), except that the non-linear

marginal tax rate replaces the linear one.

The social welfare function remains the same as in equation (4). In the Mirrlees setup it is

more convenient to work with the economy’s resource constraint rather than the government
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budget constraint.1 The economy’s resource constraint is:

N

∫
N

(nl(n)− c(n))dF (n) = pG. (56)

To determine the non-linear tax schedule T (·) and optimal public goods provision G, a

standard mechanism-design approach is employed. Any second-best allocation must satisfy the

incentive-compatibility constraints. Since n is not observable by the government, every bundle

{c(n), z(n)} for individual n must be such that each individual self-selects into this bundle

and does not prefer another bundle {c(m), z(m)} intended for individual m 6= n. By adopting

the first-order approach, as in Mirrlees (1971), the incentive-compatibility constraints can be

summarized by a differential equation on utility:

du(c(n), l(n), G, n)

dn
= un(c(n), l(n), G, n)− l(n)

n
ul(c(n), l(n), G, n), ∀n. (57)

The first-order approach yields an implementable allocation only if the second-order con-

ditions for utility maximization are fulfilled at the optimum allocation. Lemma 2 states the

conditions under which the first-order approach is both necessary and sufficient to describe the

optimum.2

Lemma 2 The optimal allocation derived under the first-order approach is implementable with

the non-linear income tax function if i) utility U(c(n), z(n), G, n) ≡ u(c(n), z(n)/n,G, n) sat-

isfies the Spence-Mirrlees condition, i.e., d(−Uz/Uc)/dn < 0, and ii) gross incomes are non-

decreasing with skill n, i.e., dz(n)/dn ≥ 0.

Proof. See Jacobs (2010).

Since the public good is identical for all agents, incentive compatibility constraints are not

affected by introducing public goods, even if different individuals exhibit a different valuation

for the public good, see also Kreiner and Verdelin (2012). Intuitively, one individual cannot

mimic another individual’s ability to benefit from the public good, since his utility function

remains the same. In the remainder of this Appendix it’s assumed that Lemma 2 holds.

To characterize the optimal second-best policy under non-linear income taxation, Proposi-

tion 8 provides the conditions for the optimal non-linear income tax, the marginal cost of public

funds, and the optimal provision of public goods. The optimal non-linear tax and modified

Samuelson rule are expressed in terms of sufficient statistics, i.e., the earnings distribution, the

willingness to pay for public goods, behavioral elasticities, and social welfare weights. The earn-

ings distribution equals the skill distribution, i.e., F̃ (z(n)) ≡ F (n), in view of the one-to-one

mapping between earnings and skills (Saez, 2001). The corresponding density of earnings equals

f̃(z(n)).

1If the government maximizes social welfare subject to the resource constraint, and all households respect
their budget constraints, then the government budget constraint is automatically satisfied by Walras’ law.

2Lemma 2 implies that the second-order conditions are locally satisfied, which is a standard result in the
Mirrlees model without public goods provision, see also Hellwig (2010).
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Proposition 8 The optimal non-linear income tax, the marginal cost of public funds, and

optimal public goods provision are given by

T ′(z(n))

1− T ′(z(n))
=

1

−εclT ′

∫ z(n)
z(n)

(
1− α(m)

η

)
f̃(z(m))dz(m)

1− F̃ (z(n))

1− F̃ (z(n))

z(n)f̃(z(n))
, ∀n, (58)

MCF ≡ η∫ z(n)
z(n) α(m)f̃(z(m))dz(m)

= 1, (59)

(1− ξG)N

∫
N

uG(·)
uc(·)

dF (n) = p

(
1−

∫
N
γnε

c
lGdF (n)

)
, γn ≡

NT ′(nl(n))nl(n)

pG
. (60)

Proof. See Appendix B.

The expression for the optimal non-linear income tax in equation (58) is identical to Saez

(2001). This expression is well known in the literature and the reader is referred to Mirrlees

(1971), Seade (1977), Tuomala (1984), Diamond (1998) and Saez (2001) for more elaborate

discussions of the optimal non-linear tax.

At the optimum, the marginal cost of public funds in equation (59) is once again equal to one.

The formulation of optimal tax policy in terms of sufficient statistics formally demonstrates that

the marginal cost of public funds equals one also in the Mirrlees (1971) model. The marginal

cost of public funds for non-distortionary taxes should be equal to the marginal cost of public

funds for all distortionary taxes. Thus, tax distortions should be equal to distributional gains

for marginal tax rates at each point in the income distribution. This can be seen by rewriting

the expression for the optimal non-linear income tax in equation (58):

MEB(n) · z(n)f̃(z(n)) =

∫ z̄

z(n)

(
1− α(m)

η

)
f̃(z(m))dz(m), (61)

MEB(n) ≡ − T ′(z(n))

1− T ′(z(n))
εclT ′ .

Clearly, the total marginal excess burden of a higher marginal tax rate at earnings level z(n)

equals the marginal distributional gain of a higher marginal tax rate at earnings level z(n).

The excess burden per unit of tax base MEB(n) is multiplied by the tax base f̃(z(n))z(n).

The distributional gain of a higher marginal tax rate at income z(n) equals the social value of

extracting a marginal unit of revenue from all individuals above z(n). The latter equals 1 –

the unit of revenue – minus the Diamond (1975) social marginal value of income α(n)/η – the

utility cost in money equivalents of paying a unit more income in tax.

If marginal tax rates are not optimized, equation (61) does not hold with equality. In that

case, the marginal excess burden of a marginal tax rate is not equal to the marginal distributional

benefit of the marginal tax rate. Moreover, if equation (61) does not hold with equality at all

points in the income distribution, the marginal cost of public funds is no longer equal to one,

i.e., MCF ≡ η
[∫ z(n)
z(n) α(m)f̃(z(m))dz(m)

]−1
6= 1.

To gain more intuition for the reasons why the modified Samuelson rule differs from the

standard Samuelson rule, it can be expressed as well in terms of the model’s primitives (see

Appendix B):

N

∫
N

(1 + ∆(n))
uG(·)
uc(·)

dF (n) = p, (62)
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where

∆(n) ≡ T ′(z(n))

1− T ′(z(n))

−εclT ′
εuzn

(
∂ ln(uG/uc)

∂ ln l(n)
− ∂ ln(uG/uc)

∂ lnn

)
, ∀n. (63)

The modified Samuelson rules in equations (60) and (62) are the same, except that equation

(60) is expressed in terms of sufficient statistics rather than the model’s primitives, i.e. the skill

distribution and the utility function (recall that 1 − T ′(z(n)) = −ul(·)/uc(·)). ∆(n) indicates

the extent to which public goods are overprovided relative to the first-best Samuelson rule, cf.

equation (26). ∆(n) can be interpreted as an implicit subsidy on public goods provision at skill

level n. ∆(n) is different from zero if the marginal willingness to pay for the public good uG(·)
uc(·)

varies with labor supply or with ability.

Whether public goods are under- or overprovided compared to the first-best rule is deter-

mined by the presence of the distortionary income tax (T ′(z(n)) > 0). The more distortionary

is income taxation, as indicated by a larger tax rate T ′(z(n)) or a larger compensated elasticity

εclT ′ , the more public goods provision deviates from the first-best policy rule. In the absence

of redistributional concerns, marginal tax rates are zero (T ′(z(n)) = 0), and so is the implicit

subsidy on public goods provision (∆(n) = 0). In that case, public goods provision satisfies the

first-best Samuelson rule in equation (26).

The public good is more (less) complementary to work than private consumption, if the

marginal willingness to pay for the public good rises (falls) with labor effort (i.e., ∂ ln(uG/uc)
∂ ln l >

0 (< 0)).3 The provision of public goods then increases. The intuition is the same as in

Atkinson and Stiglitz (1976). The government should provide more public goods if they are

more complementary to work than private goods are, and provide fewer public goods if they are

more complementary to leisure than private goods are. In doing so, the government alleviates

the distortions of the labor income tax on work effort. To put it differently, if ∂ ln(uG/uc)
∂ ln l > 0

(< 0), a higher (lower) level of public goods provision relaxes the incentive constraints associated

with the redistribution of income, as individuals with a high ability are less tempted to mimic

individuals with a lower ability. The Atkinson and Stern (1974) term capturing the interaction

of the public goods with labor supply is therefore also present under non-linear taxation. See

also Christiansen (1981) and Boadway and Keen (1993). The term ∂ ln(uG/uc)
∂ ln l in equation (62) is

associated with the compensated cross-elasticity εclG of labor supply with respect to the public

good in the modified Samuelson rule in equation (60).

If the utility function differs across individuals, public goods provision should also be em-

ployed for redistribution. Public goods provision can extract additional information on the skill

level n. Intuitively, the willingness to pay for public goods varies with ability even if all indi-

viduals would have the same labor earnings. Therefore, the willingness to pay for public goods

reveals information about earnings ability that is independent from labor income. This makes

over- or underprovision of public goods attractive for redistribution. Over- or under-provision

of public goods – relative to the first-best Samuelson rule – results in more redistribution than

the government can achieve with the non-linear income tax alone. Naturally, under- or overpro-

3The term ∂ ln(uG/uc)
∂ ln l

can be rewritten as ωl(ρlG − ρlc), where ωl ≡ −lul
u

> 0 is the utility share of labor,
ρlG ≡ ulGu

(−ul)uG
is the Hicksian partial elasticity of complementarity between public goods and labor, and ρlc ≡

ulcu
(−ul)uc

is the Hicksian partial elasticity of complementarity between private consumption and labor. Thus, the
willingness to pay for the public good increases with labor supply if ρlG > ρlc. That is, if the public good is a
stronger Hicksian complement to labor than private consumption is.
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vision causes inefficiencies, and these need to be traded off against the distributional gains. If

the marginal willingness to pay for the public good rises (falls) with ability (i.e., ∂ ln(uG/uc)
∂ lnn > 0

(< 0)), then the public good benefits the individuals with higher skill levels relatively more

(less).4 Consequently, the optimal level of public goods provision falls (increases) for redistribu-

tional reasons. The term ∂ ln(uG/uc)
∂ lnn in equation (62) is thus associated with the distributional

characteristic ξG of the public good in the modified Samuelson rule under linear taxation in

equation (60).

Alternatively, one can understand this result by looking at the incentive constraints. If
∂ ln(uG/uc)

∂ lnn > 0 (< 0), then high-skill types are less (more) tempted to mimic low-skill types if

public goods provision expands, since they have a stronger (weaker) preference for public goods.

Consequently, smaller public goods provision relaxes (tightens) the incentive-compatibility con-

straints. Consequently, reducing public goods provision below the first-best rule reduces (in-

creases) the distortions of redistributing income.

If the utility function is identical for all individuals n, the distributional term drops out (i.e.,
∂ ln(uG/uc)

∂ lnn = 0). Intuitively, if differences in earning ability are the only source of heterogeneity,

and everyone has the same utility function, the willingness to pay for public good is the same if

labor earnings are the same. Therefore, differences in the willingness to pay for public goods only

originate from differences in labor earnings. In that case, under- or or overprovision of the public

good – relative to the first-best Samuelson rule – does not result in more income redistribution

than can be achieved with the non-linear income tax alone. However, under- or overprovision

of public goods – relative to the first-best rule – causes inefficiencies. These distortions can

be avoided by organizing all redistribution via the non-linear income tax and providing public

goods according to the Samuelson rule. See also Christiansen (1981) and Boadway and Keen

(1993) for the case of homogeneous preferences. Hence, when the utility function is the same

for all individuals, public goods are not provided for redistributional reasons.

The finding that public goods are not used for redistribution if utilities are identical contrasts

with the linear case. Under linear income taxation, optimal provision of the public good is always

found to be dependent on the distributional impact of the public good, except for the (trivial)

cases in which the marginal willingness to pay is equal or is linear in income for all individuals.

With linear taxation, the government uses an informationally inferior instrument to redistribute

income by ignoring the information on individual earnings. Hence, the government optimally

complements the income tax by using indirect instruments for redistribution, such as public

goods provision.

Christiansen (1981), Boadway and Keen (1993) and Kaplow (1996) discuss the case in

which the utility function is identical for all individuals and is (weakly) separable between pri-

vate/public goods and leisure. They find that the optimal provision of public goods then follows

the first-best Samuelson rule. The next Proposition demonstrates this formally. Naturally, the

allocations will differ between first- and second-best.

4The term ∂ ln(uG/uc)
∂ lnn

can be rewritten as ωn(ρnG − ρnc), where ωn ≡ nun
u

> 0 is the utility share of
ability, ρnG ≡ unGu

unuG
is the Hicksian partial elasticity of complementarity between public goods and ability, and

ρnc ≡ uncu
unuc

is the Hicksian partial elasticity of complementarity between private consumption and ability. The
willingness to pay for the public good increases with ability if ρnG > ρnc. That is, if public goods are stronger
Hicksian complements to ability than private goods are.
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Proposition 9 If utility is given by u(n) ≡ u(h(c(n), G), l(n)), ∀n, then the optimal provi-

sion of public goods follows the first-best Samuelson rule in second-best settings with optimal

distortionary taxation:

N

∫
N

uG(·)
uc(·)

dF (n) = p. (64)

Proof. If u(n) ≡ u(h(c,G), l), it is immediately established that ∂ ln(uG/uc)
∂ ln l = ∂ ln(uG/uc)

∂ lnn = 0.

Substitution in (62) yields (64).

Proposition 9 is the non-linear counterpart of Proposition 3. It demonstrates that, once

second-best interactions of the public good with labor supply are absent, or when redistribution

via public goods has no value added over direct income redistribution, the optimal rule for public

good provision follows the first-best Samuelson rule. Hence, there should be no correction for

the marginal cost of public funds as distortions of taxation cancel against the distributional

gains of taxation.

C Proof Proposition 8

The proof of Proposition 8 follows in three steps. First, we derive the behavioral elasticities.

Second, we derive the first-order conditions using a Hamiltonian approach. Third, we rewrite

these first-order conditions using the elasticities derived in the first step of the proof.

C.1 Elasticities

First, the behavioral elasticities of model are derived. These elasticities will be used later in

deriving the optimal tax expressions. As in Jacquet et al. (2013), define the following shift

function – omitting the indices n:

L(l, G, n, τ, ρ) ≡ n(1− T ′(nl)− τ)uc(nl − T (nl)− τ(nl − nl(n)) + ρ, l, G, n)

+ ul(nl − T (nl)− τ(nl − nl(n)) + ρ, l, G, n). (65)

L(l, n, τ, ρ,G) measures a shift in the first-order condition for labor supply when one of the

variables l, G, n, τ , or ρ changes. τ captures an exogenous increase in the marginal tax rate

(i.e., for any level of earnings). ρ is introduced to retrieve the income effect when the individual

receives an exogenous amount of income ρ. The first-order condition for labor supply of the

individual n is thus equivalent to L(l, G, n, 0, 0) = 0. The following partial derivatives of the

shift function L are found, using the first-order condition −ul = n(1− T ′)uc:

Ll(l, G, n, 0, 0) = ull +

(
ul
uc

)2

ucc − 2

(
ul
uc

)
ucl + nul

T ′′

(1− T ′)
, (66)

Ln(l, G, n, 0, 0) =

(
−ul
l

+ nul
T ′′

(1− T ′)
+

(
ul
uc

)2

ucc −
(
ul
uc

)
ulc

)
l

n
+

(
uln
ul
− ucn

uc

)
ul, (67)

Lτ (l, G, n, 0, 0) = −nuc, (68)

Lρ(l, G, n, 0, 0) =
ulcuc − ulucc

uc
. (69)
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The envelope theorem gives the following formula for the partial derivatives: ∂l
∂q = −Lq

Ll
, q =

n, τ, ρ. The uncompensated wage elasticity of labor supply εuln is equal to:

εuln ≡
∂lu

∂n

n

l
= −Ln

Ll

n

l
= −

(
−ul
l + nul

T ′′

(1−T ′) +
(
ul
uc

)2
ucc −

(
ul
uc

)
ulc

)
+
(
nuln
ul
− nucn

uc

)
ul
l

ull +
(
ul
uc

)2
ucc − 2

(
ul
uc

)
ucl + nul

T ′′

(1−T ′)

.

(70)

The income elasticity of labor supply εlρ is defined as:

εlρ ≡ (1− T ′)n ∂l
∂ρ

= −(1− T ′)nLρ
Ll

=

ul
uc

(
ulc − ulucc

uc

)
ull +

(
ul
uc

)2
ucc − 2

(
ul
uc

)
ucl + nul

T ′′

(1−T ′)

. (71)

The compensated wage elasticity of labor supply εcln is defined residually by the Slutsky equation

(εcln ≡ εuln − εlρ):

εcln ≡
∂lc

∂n

n

l
= εuln − εlρ =

ul
l − nul

T ′′

(1−T ′) −
(
nuln
ul
− nucn

uc

)
ul
l

ull +
(
ul
uc

)2
ucc − 2

(
ul
uc

)
ucl + nul

T ′′

(1−T ′)

. (72)

The compensated tax elasticity of labor supply εclT ′ is:

εclT ′ ≡
∂lc

∂τ

(1− T ′)
l

= −Lτ
Ll

(1− T ′)
l

=
−ul/l

ull +
(
ul
uc

)2
ucc − 2

(
ul
uc

)
ucl + nul

T ′′

(1−T ′)

. (73)

Note that the compensated tax elasticity of earnings supply εczT ′ equals the compensated tax

elasticity of labor supply (since the wage rate n is not affected by an increase in marginal taxes,

only labor supply). The uncompensated wage elasticity of earnings supply εuzn is equal to:

εuzn ≡
∂z

∂n

n

z
= 1 + εuln =

(
1 +

(
lull
ul
− lucl

uc

)
−
(
nuln
ul
− nucn

uc

))
ul
l

ull +
(
ul
uc

)2
ucc − 2

(
ul
uc

)
ucl + nul

T ′′

(1−T ′)

. (74)

C.2 Hamiltonian

Consumption is defined as a function of the allocation: c(n) ≡ c(l(n), u(n), G, n), which is

obtained by inverting the utility function u(c(n), l(n), G, n). The derivatives of c(·) are found

by applying the implicit function theorem: cu = 1/uc, cl = −ul/uc, cG = −uG/uc, cn = −un/uc.
For notational compactness the incentive compatibility constraint can be rewritten as:

du(n)

dn
= un(c(l(n), u(n), G, n), l(n), G, n)− l(n)

n
ul(c(l(n), u(n), G, n), l(n), G, n) (75)

≡ ϕ(l(n), u(n), G, n),
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where the function ϕ(l(n), u(n), G, n) has partial derivatives – omitting the n-indices:

ϕl = −ul
n

(
1 +

(
lull
ul
− lulc

uc

)
−
(
nunl
ul
− nunc

uc

))
, (76)

ϕu =
1

n

(
nunc
uc
− lulc

uc

)
, (77)

ϕG = unG − unc
uG
uc
− l

n

(
ulG − ulc

uG
uc

)
. (78)

The Hamiltonian for maximizing social welfare is:

H = u(n)f(n) + η [nl(n)− c(l(n), u(n), G, n)− pG/N ] f(n)− θ(n)ϕ(l(n), u(n), G, n), (79)

where θ(n) is the co-state variable associated with state variable u(n), which has to satisfy

incentive compatibility constraint (75). Furthermore, η denotes the Lagrange multiplier on the

economy’s resource constraint in equation (56). θ(n) is multiplied with a minus sign to obtain

a positive multiplier θ(n). The first-order conditions for an optimal allocation are – omitting

the n-indices:

∂H
∂l

= η

(
n+

ul
uc

)
f +

θul
n

(
1 +

(
lull
ul
− lulc

uc

)
−
(
nunl
ul
− nunc

uc

))
= 0, ∀n, (80)

∂H
∂u

=

(
1− η

uc

)
f − θ

n

(
nunc
uc
− lulc

uc

)
=

dθ

dn
, ∀n, (81)∫

N

∂H
∂G

dn =

∫
N

[
η

(
uG
uc
− p

N

)
f − θuG

n

((
nunG
uG

− nunc
uc

)
−
(
lulG
uG
− lulc

uc

))]
dn = 0, (82)

where the derivatives of the c(·) function are used in each line. The transversality conditions

for this optimal control problem are given by limn→n θ(n) = 0, and limn→n θ(n) = 0.

C.3 Optimal taxation

C.3.1 Optimal non-linear taxes

The first-order conditions for l in equation (80) can be rewritten using −uluc
= (1− T ′(z))n:

T ′

1− T ′
=
ucθ/η

nf(n)

[
1 +

(
lull
ul
− lulc

uc

)
−
(
nunl
ul
− nunc

uc

)]
. (83)

Next, employ the definitions for the elasticities for εclT ′ in equation (73) and εuzn in equation

(74) to find: [
1 +

(
lull
ul
− lulc

uc

)
−
(
nunl
ul
− nunc

uc

)]
=

εuzn
−εclT ′

. (84)

Hence, the first-order condition for optimal taxes can be written as:

T ′(z(n))

1− T ′(z(n))
=
uc(·)θ/η
nf(n)

εuzn
−εclT ′

. (85)
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The first-order condition for u in equation (81) can be rewritten as:(
uc
η
− 1

)
f(n)− θ

η
ucn +

θ

η

lulc
n

=
uc
η

dθ

dn
. (86)

Introduce the composite multiplier Θ(n):

Θ(n) ≡ θ(n)uc(c(n), l(n), G, n)

η
=
θ(n)uc(c(l(n), u(n), G, n), l(n), G, n)

η
, (87)

which has total derivative (note that G does not vary with n):

dΘ

dn
=

dθ

dn

uc
η

+
θucc
η

(
∂c

∂l

dl

dn
+
∂c

∂u

du

dn
+
∂c

∂n

)
+
θ

η
ucl

dl

dn
+
θ

η
ucn. (88)

Simplify the last expression using the derivatives of the c-function and substituting equation

(75) for du
dn :

dΘ

dn
=

dθ

dn

uc
η
− θ

η

(
l

n

ulucc
uc
− ucn

)
− θ

η

(
ulucc
uc
− ucl

)
dl

dn
. (89)

Use the elasticity εlρ in equation (71) and the elasticity εclT ′ in equation (73) to find an expression

for uccul
uc
− ucl:

ulucc
uc
− ulc =

εlρ
εclT ′

uc
l
. (90)

Substitute equation (90) into equation (89), and use εuln from equation (70) to derive:

dΘ

dn
=

dθ

dn

uc
η
− θ

η

l

n

uccul
uc

+
θ

η
ucn −

θ

η

εlρ
εclT ′

uc
n
εuln. (91)

Substitute the first-order condition for u in equation (86) into equation (91) to find:

dΘ

dn
+
θ

η

εlρ
εclT ′

uc
n
εuln =

(
uc
η
− 1

)
f(n)− θ

η

(
uccul
uc
− ulc

)
l

n
. (92)

Substitute equation (90) in equation (92) and note that 1 + εuln = εuzn from equations (70) and

(74) to find:
dΘ

dn
+
uc
ul

θ

η

εuzn
εclT ′

ul
n
εlρ =

(
uc
η
− 1

)
f(n). (93)

Rewrite first-order condition for zn in equation (85):

T ′nf(n) =
θ

η

ul
n

εuzn
εclT ′

. (94)

Substitute equation (94) in (93) to find:

dΘ

dn
=

(
uc
η

+
T ′

1− T ′
εlρ − 1

)
f(n). (95)
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Equation (95) can be integrated – using a transversality condition – to obtain:

Θ(n) =
θ(n)uc(c(n), l(n), G, n)

η
=

∫ n

n

(
1− uc(m)

η
− T ′(z(m))

1− T ′(z(m))
εlρ

)
f(m)dm. (96)

The ABC-formula for the optimal non-linear tax results upon substituting equation (96) in

equation (85):

T ′(z(n))

1− T ′(z(n))
=

εuzn
−εclT ′

∫ n
n

(
1− uc(m)

η − T ′(z(m))
1−T ′(z(m))εlρ

)
f(m)dm

1− F (n)

1− F (n)

nf(n)
. (97)

Finally, the optimal tax formula can be written in terms of the earnings density as in Saez

(2001) and Jacquet et al. (2013). Define the earnings distribution as F̃ (z(n)) ≡ F (n), with

corresponding density function f̃(z(n)). Then, it can be derived that εuznf̃(z(n))z(n) = f(n)n.

By noting that there is a perfect mapping between earnings z(n) and ability n the expression

for the optimal income tax is written as:

T ′(z(n))

1− T ′(z(n))
=

1

−εclT ′

∫ z(n)
z(n)

(
1− g(m)− T ′(z(m))

1−T ′(z(m))εlρ

)
f̃(z(m))dz(m)

1− F̃ (z(n))

1− F̃ (z(n))

z(n)f̃(z(n))
. (98)

Using the definition of α(n) ≡ λ(n) + η T ′(z(n))
1−T ′(z(n))εlρ = λ(n) + ηnT ′(z(n)) ∂l(n)

∂(−T (0)) , where the

second step follows from εlρ = εl(−T (0)), this can be rewritten as the expression in the main

text.

C.3.2 Marginal cost of public funds

Use α(n) ≡ λ(n) + η T ′(z(n))
1−T ′(z(n))εlρ and the transversality condition θ(n) = 0 in equation (96) to

derive:

0 =

∫ n

n
(1− α(m)) f(m)dm. (99)

Hence, switching the bound of the integral, the marginal cost of public funds equals unity in

the policy optimum:

MCF ≡ η∫ z(n)
z(n) α(m)f̃(z(m))dm

= 1. (100)

C.3.3 Optimal public goods provision

In order to express the optimal formula for public goods provision in terms of sufficient statis-

tics, the optimal level of public goods is evaluated along an optimized non-linear tax system

T ∗(nl(n)). The Lagrangian for maximizing social welfare with respect to the public good can

then be formulated as:

L ≡ N
∫
N
v(n)dF (n) + η

(
N

∫
N
T ∗(nl(n))dF (n)− pG

)
, (101)
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where v(n) is indirect utility of the individual. The first-order condition for G is given by:

∂L
∂G

= N

∫
N

(
uG + ηnT ∗′(nl(n))

∂l(n)

∂G

)
dF (n)− pη = 0, (102)

where the derivatives of indirect utility have been substituted. Substituting the Slutsky equation
∂lu(n)
∂G = ∂lc(n)

∂G + uG
λ(n)

∂l(n)
∂ρ yields:

N

∫
N

α(n)

η

uG
uc

dF (n) +N

∫
N

(
nT ∗′(nl(n))

∂lc(n)

∂G

)
dF (n) = p, (103)

Use the Feldstein characteristic for the public good ξG to derive:

(1− ξG)

∫
N

uG(·)
uc(·)

dF (n) =

∫
N

α(n)

η

uG(·)
uc(·)

dF (n). (104)

Hence, optimal provision of the public good follows from:

(1− ξG)N

∫
N

uG(·)
uc(·)

dF (n) = p

(
1−

∫
N
γnε

c
lGdF (n)

)
, (105)

where γn ≡ NT ∗′(nl(n))nl(n)
pG .

Alternatively, one can derive the optimal rule for public goods provision in terms of the

model’s primitives, as in Jacobs (2010). Derive that nunG
uG
− nunc

uc
= ∂ ln(uG/uc)

∂ lnn and lulG
uG
− lulc

uc
=

∂ ln(uG/uc)
∂ ln l . Substitute this in equation (82), and rearrange to obtain:

N

∫
N

uG(·)
uc(·)

dF (n) = p+N

∫
N

θ(n)uG(·)/η
nf(n)

(
∂ ln(uG/uc)

∂ lnn
− ∂ ln(uG/uc)

∂ ln l(n)

)
dF (n). (106)

Substitute equation (85) for the optimal income tax in equation (106) to find:

N

∫
N

uG(·)
uc(·)

(1 + ∆(n))dF (n) = p, (107)

where

∆(n) ≡ T ′(z(n))

1− T ′(z(n))

−εclT ′
εuzn

(
∂ ln(uG/uc)

∂ ln l(n)
− ∂ ln(uG/uc)

∂ lnn

)
. (108)
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