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1 Model

Individuals maximize utility:

un ≡ u(cn, qn, ln, E), uc, uq,−ul, uE > 0, ucc, ull, uqq, uEE < 0, ∀n. (1)

subject to their budget constraints:

cn + (1 + τ)qn = (1− t)nln + T, ∀n. (2)

The Lagrangian for utility maximization is

L ≡ u(cn, qn, ln, E) + λn [(1− t)nln + T − cn − (1 + τ)qn] , ∀n, (3)

where λn is the Lagrange multiplier on the household budget constraint and it denotes the marginal utility of
income.

Households take environmental quality E as given when deciding on their consumption plans. First-order
conditions are:1

∂L
∂cn

= uc(·)− λn = 0, ∀n, (4)

∂L
∂qn

= uq(·)− λn(1 + τ) = 0, ∀n (5)

∂L
∂ln

= ul(·) + λn(1− t)n = 0, ∀n, (6)

∂L
∂λn

= (1− t)nln + T − cn − (1 + τ)qn = 0, ∀n. (7)

From these equations follow equations (3) and (4) in the text:

−ul
uc

= (1− t)n, ∀n, (8)

uq
uc

= 1 + τ, ∀n. (9)

The indirect utility function is designated by vn ≡ v(T, t, τ, E) ≡ u(ĉn, q̂n, l̂n, E), ∀n, where hats denote optimized
values of each commodity and labor supply. Application of Roy's identity produces the following derivatives of
the indirect utility function:

∂vn
∂T

= λn, ∀n, (10)

∂vn
∂t

= −λnnln, ∀n, (11)
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1Strict quasi-concavity of the utility function ensures that second-order conditions for a maximum are ful�lled under linear
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∂vn
∂τ

= −λnqn, ∀n, (12)

∂vn
∂E

= λn
uE
uc
, ∀n. (13)

Environmental quality (E) is a linear function of aggregate consumption of dirty goods:

E ≡ E0 − αN
ˆ
N
qndF (n), E0, α > 0, (14)

The government maximizes a Bergson-Samuelson social welfare function, which is a concave sum of individual
utilities:

N

ˆ
N

Ψ(un)dF (n), Ψ′(un) > 0, Ψ′′(un) ≤ 0. (15)

subject to the government budget constraint:

N

ˆ
N

(tnln + τqn)dF (n) = NT +R. (16)

2 Optimal linear taxation

The Lagrangian for maximizing social welfare is given by (where the whole expression has been divided by the
population size N to save on notation):

max
{T,t,τ,E}

L ≡
ˆ
N

Ψ(v(T, t, τ, E))dF (n) (17)

+ η

(ˆ
N

(tnln + τqn)dF (n)− T − R

N

)
− µ

(
E − E0

N
+ α

ˆ
N
qndF (n)

)
.

The Lagrange multiplier η denotes the marginal social value of public resources and the Lagrange multiplier µ
denotes the marginal social cost per capita (measured in social welfare units) of providing a better environmental
quality E.

The �rst-order conditions for an optimal allocation are given by:

∂L
∂T

=

ˆ
N

[
Ψ′λn − η + ηtn

∂ln
∂T

+ (ητ − αµ)
∂qn
∂T

]
dF (n) = 0, (18)

∂L
∂t

=

ˆ
N

[
−nlnΨ′λn + ηnln + ηtn

∂ln
∂t

+ (ητ − αµ)
∂qn
∂t

]
dF (n) = 0, (19)

∂L
∂τ

=

ˆ
N

[
−qnΨ′λn + ηqn + ηtn

∂ln
∂τ

+ (ητ − αµ)
∂qn
∂τ

]
dF (n) = 0, (20)

∂L
∂E

=

ˆ
N

[
uE
uc

Ψ′λn −
µ

N
+ ηtn

∂ln
∂E

+ (ητ − αµ)
∂qn
∂E

]
dF (n) = 0, (21)

where the derivatives of the indirect utility function (10) � (13) are used in each subsequent expression.2

The optimal income tax, the optimal environmental tax, and the optimal provision of environmental quality
are derived by employing the Slutsky equations for labor supply, the demand for the dirty commodity, and the
demand for environmental quality:

∂ln
∂t

=
∂l∗n
∂t
− nln

∂ln
∂T

, ∀n, (22)

∂qn
∂t

=
∂q∗n
∂t
− nln

∂qn
∂T

, ∀n, (23)

∂ln
∂τ

=
∂l∗n
∂τ
− qn

∂ln
∂T

, ∀n, (24)

∂qn
∂τ

=
∂q∗n
∂τ
− qn

∂qn
∂T

, ∀n, (25)

∂ln
∂E

=
∂l∗n
∂E

+
uE
uc

∂ln
∂T

, ∀n, (26)

∂qn
∂E

=
∂q∗n
∂E

+
uE
uc

∂qn
∂T

, ∀n. (27)

2We always assume that the solution to the optimal tax problem is interior and that second-order conditions are met.

2



The asterisks denote the compenated changes of the demand and supply functions.3

In order to interpret the �rst-order conditions, we will employ the following de�nitions.

De�nition 1 The social marginal value of transferring a marginal unit of income to individual n is:

λ∗n ≡ Ψ′λn + ηtn
∂ln
∂T

+ (ητ − αµ)
∂qn
∂T

. (28)

De�nition 2 The marginal cost of public funds is:

MCF ≡ η/λ̄∗, λ̄∗ ≡
ˆ
N
λ∗ndF (n). (29)

De�nition 3 The distributional characteristics of labor income ξl, polluting goods consumption ξq, and environ-
mental quality ξE are de�ned as:

ξl ≡ −
´
N λ
∗
nzndF (n)−

´
N λ
∗
ndF (n)

´
N zndF (n)´

N λ
∗
ndF (n)

´
N zndF (n)

= −cov [λ∗n, zn]

λ̄∗z̄
> 0, (30)

ξq ≡ −
´
N λ
∗
nqndF (n)−

´
N λ
∗
ndF (n)

´
N qndF (n)´

N λ
∗
ndF (n)

´
N qndF (n)

= −cov [λ∗n, qn]

λ̄∗q̄
, (31)

ξE ≡ −
´
N λ
∗
n
uE
uc

dF (n)−
´
N λ
∗
ndF (n)

´
N

uE
uc

dF (n)´
N λ
∗
ndF (n)

´
N

uE
uc

dF (n)
= −

cov
[
λ∗n,

uE
uc

]
λ̄∗ uEuc

, (32)

where z̄ ≡
´
N zndF (n), q̄ ≡

´
N qndF (n), uEuc ≡

´
N

uE
uc

dF (n).

De�nition 4 The compensated elasticities of labor supply and polluting commodity demand with respect to the
income tax, the corrective tax and environmental quality are de�ned as:

εlt ≡
∂l∗n
∂t

1− t
ln

< 0, (33)

εqt ≡
∂q∗n
∂t

1− t
qn

, (34)

εlτ ≡
∂l∗n
∂τ

1 + τ

ln
, (35)

εqτ ≡
∂q∗n
∂τ

1 + τ

qn
< 0, (36)

εlE ≡
∂l∗n
∂E

E

ln
, (37)

εqE ≡
∂q∗n
∂E

E

qn
. (38)

Proposition 1 (First-best optimum) In �rst best, all redistribution occurs through individualized lump-sum taxes,
the marginal income tax rate is set to zero (t = 0), the marginal cost of public funds equals unity (MCF = 1),
and the optimal corrective tax satis�es the �rst-best Pigouvian tax rate:

τ =
αµ

λ̄∗
. (39)

Moreover, the Pigouvian tax sustains a �rst-best level of environmental quality:

N

ˆ
N

uE
uc

dF (n) =
µ

η
. (40)

Proof. When individualized lump-sum transfers and taxes are available, all inequality can be eliminated so as
to equalize the social marginal value of income (λ∗n) across agents. Consequently all distributional terms are zero
(ξl = ξq = ξE = 0). Moreover, from (18) follows MCF = 1. Substitution in (54), (62) and (68) yields:

0 =
t

1− t
(−εlt) +

(τ − αµ/λ̄∗)
1 + τ

(−γεqt) . (41)

3To compute the income e�ect of the change in environmental quality, the property has been used that uE
uc

measures the marginal

change in (virtual) income when environmental quality improves by one unit, see ?
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0 =
t

1− t

(
−εlτ
γ̄

)
+
τ − αµ/λ̄∗

1 + τ

(
−γεqτ

γ̄

)
, (42)

N

ˆ
N

uE
uc

dF (n) =
µ

η
− δN

[
t

1− t
εlE +

(
τ − αµ/λ̄∗

1 + τ

)
γεqE

]
. (43)

Solving the �rst two equations yields t = 0 and τ = αµ/λ̄∗. From the last equation follows that N
´
N

uE
uc

dF (n) =
µ
η .

Proposition 2 (Second-best full optimum) The policy rules for the optimal transfer, income tax, pollution tax
and environmental quality are given by:

MCF = 1, (44)

ξl =
t

1− t
(−εlt) +

(τ − αµ/λ̄∗)
1 + τ

(−γεqt) , (45)

ξq =
t

1− t

(
−εlτ
γ̄

)
+

(τ − αµ/λ̄∗)
1 + τ

(
−γεqτ

γ̄

)
. (46)

(1− ξE)N

ˆ
N

uE
uc

dF (n) =
µ

η
+ δN

(
t

1− t
(−εlE) +

(τ − αµ/λ̄∗)
1 + τ

(−γεqE)

)
, (47)

where γn ≡ (1+τ)qn
(1−t)nln is the net expenditure share of polluting commodities in net labor income, γ̄ ≡

[´
N γnnlndF (n)

]
×[´

N nlndF (n)
]−1

denotes the income-weighted average of γn, δ ≡ (1 − t)
´
N nlndF (n) /E measures the ratio of

net labor income to environmental quality, and εxj ≡
[´
N εxjnlndF (n)

] [´
N nlndF (n)

]−1
is the income-weighted

average of the elasticity εxj, x = l, q, j = t, τ, E.

Proof. Optimal transfers � Substituting de�nition 2 for MCF in the �rst-order condition of the lump-sum
transfer in equation (18) yields

ˆ
N

Ψ′λn + ηtn
∂ln
∂T

+ (ητ − αµ)
∂qn
∂T︸ ︷︷ ︸

=λ∗n

dF (n) = η. (48)

Rewriting gives (44).
Optimal income taxes � Substituting the Slutsky equations (22) and (23) in equation (19) yields:

∂L
∂t

=

ˆ
N

[
−nlnΨ′λn + ηnln + ηtn

(
∂l∗n
∂t
− nln

∂ln
∂T

)
+ (ητ − αµ)

(
∂q∗n
∂t
− nln

∂qn
∂T

)]
dF (n) = 0. (49)

Rewriting gives:

∂L
∂t

=

ˆ
N

−
(

Ψ′λn + ηtn
∂ln
∂T

+ (ητ − αµ)
∂qn
∂T

)
︸ ︷︷ ︸

=λ∗n

nln + ηnln + ηtn
∂l∗n
∂t

+ (ητ − αµ)
∂q∗n
∂t

dF (n) = 0. (50)

Next, multiplying the third term with 1 = (1−t)
(1−t)

ln
ln

and the fourth term with 1 = (1+τ)
(1+τ)

qn
qn

(1−t)
(1−t)

nln
nln

and rewriting

yields:

∂L
∂t

=

ˆ
N

−λ∗nnln + ηnln + η
t

1− t
nln

∂l∗n
∂t

1− t
ln

+ η

(
τ − αµ

η

)
1 + τ

nln
(1 + τ)qn
(1− t)nln

∂q∗n
∂t

1− t
qn

dF (n) = 0. (51)

Substitute the de�nitions for the compensated elasticities (33) and (34) and the de�nition of the share γn ≡
(1+τ)qn
(1−t)nln to �nd:

∂L
∂t

=

ˆ
N

−λ∗nnln + ηnln + η
t

1− t
nlnεlt + η

(
τ − αµ

η

)
1 + τ

nlnγnεqt

dF (n) = 0. (52)

Dividing the equation by η
´
N nlndF (n) gives:

1−
´
N λ
∗
ndF (n)

η

´
N λ
∗
nnlndF (n)´

N λ
∗
ndF (n)

´
N nlndF (n)

+
t

1− t

´
N nlnεltdF (n)´
N nlndF (n)

+

(
τ − αµ

η

)
1 + τ

´
N nlnγnεqtdF (n)´
N nlndF (n)

= 0. (53)
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Using the de�nition for the marginal cost of funds (29) and distributional characteristic (30) gives:

1− 1

MCF
+

ξl
MCF

=
t

1− t
(−εlt) +

(
τ − αµ/λ̄∗

MCF

)
1 + τ

(−γεqt) . (54)

Substituting (44) gives (45).
Optimal pollution taxes � Substituting the Slutsky equations (24) and (25) in equation (20) yields:

∂L
∂τ

=

ˆ
N

[
−qnΨ′λn + ηqn + ηtn

(
∂l∗n
∂τ
− qn

∂ln
∂T

)
+ (ητ − αµ)

(
∂q∗n
∂τ
− qn

∂qn
∂T

)]
dF (n) = 0, (55)

Rewriting gives:

∂L
∂τ

=

ˆ
N

−
(

Ψ′λn + ηtn
∂ln
∂T

+ (ητ − αµ)
∂qn
∂T

)
︸ ︷︷ ︸

=λ∗n

qn + ηqn + ηtn
∂l∗n
∂τ

+ (ητ − αµ)
∂q∗n
∂τ

dF (n) = 0. (56)

Next, multiplying the third term with 1 = (1+τ)
(1+τ)

qn
qn

(1−t)
(1−t)

ln
ln

and the fourth term with 1 = (1+τ)
(1+τ)

qn
qn

and rewriting

yields:

∂L
∂τ

=

ˆ
N

−λ∗nqn + ηqn + η
t

1− t
qn

(1− t)nln
(1 + τ)qn

∂l∗n
∂τ

1 + τ

ln
+ η

(
τ − αµ

η

)
1 + τ

qn
∂q∗n
∂τ

1 + τ

qn

dF (n) = 0. (57)

Substituting the de�nitions for the compensated elasticities (35) and (36) and the de�nition of the share γn ≡
(1+τ)qn
(1−t)nln gives:

∂L
∂τ

=

ˆ
N

−λ∗nqn + ηqn + η
t

1− t
qn
εlτ
γn

+ η

(
τ − αµ

η

)
1 + τ

qnεqτ

dF (n) = 0. (58)

Dividing the equation by η
´
N nlndF (n) gives:(

1−
´
N λ
∗
ndF (n)

η

´
N λ
∗
nqndF (n)´

N λ
∗
ndF (n)

´
N qndF (n)

)
(1− t)
(1 + τ)

´
N γnnlndF (n)´
N nlndF (n)

+
(1− t)
(1 + τ)

t

1− t

´
N nlnεlτdF (n)´
N nlndF (n)

(59)

+

(
τ − αµ

η

)
1 + τ

(1− t)
(1 + τ)

´
N γnnlnεqτdF (n)´
N nlndF (n)

= 0.

(
1− 1− ξq

MCF

)
(1− t)
(1 + τ)

γ̄ +
(1− t)
(1 + τ)

t

1− t
εlτ +

(
τ − αµ

η

)
1 + τ

(1− t)
(1 + τ)

´
N γnnlnεqτdF (n)´
N nlndF (n)

= 0. (60)

Using qn = (1−t)
(1+τ)γnnln, the de�nition for the marginal cost of funds (29), the distributional characteristic (31),

and dividing by (1−t)
(1+τ) gives:

(
1− 1− ξq

MCF

)
γ̄ +

t

1− t

´
N εlτnlndF (n)´
N nlndF (n)

+

(
τ − αµ

η

)
1 + τ

´
N γnεqτnlndF (n)´
N nlndF (n)

= 0. (61)

Rewriting yields:

1− 1

MCF
+

ξq
MCF

=
t

1− t

(
−εlτ
γ̄

)
+

(
τ − αµ/λ̄∗

MCF

)
1 + τ

(
−γεqτ

γ̄

)
, (62)

Substituting (44) gives (46).
Optimal environmental quality � Substituting the Slutsky equations (26) and (27) in equation (21) yields:

∂L
∂E

=

ˆ
N

[
uE
uc

Ψ′λn −
µ

N
+ ηtn

(
∂l∗n
∂E

+
uE
uc

∂ln
∂T

)
+ (ητ − αµ)

(
∂q∗n
∂E

+
uE
uc

∂qn
∂T

)]
dF (n) = 0. (63)

Rewriting gives:

∂L
∂E

=

ˆ
N


(

Ψ′λn + ηtn
∂ln
∂T

+ (ητ − αµ)
∂qn
∂T

)
︸ ︷︷ ︸

=λ∗n

uE
uc
− µ

N
+ ηtn

∂l∗n
∂E

+ (ητ − αµ)
∂q∗n
∂E

dF (n) = 0. (64)
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Next, multiplying the third term with 1 = E
E

(1−t)
(1−t)

ln
ln

and the fourth term with 1 = E
E

(1+τ)
(1+τ)

qn
qn

(1−t)nln
(1−t)nln and

rewriting yields:

∂L
∂E

=

ˆ
N

λ∗nuEuc − µ

N
+ η

t

1− t
(1− t)nln

E

∂l∗n
∂E

E

ln
+ η

(
τ − αµ

η

)
1 + τ

(1− t)nln
E

(1 + τ)qn
(1− t)nln

∂q∗n
∂E

E

qn

dF (n) = 0. (65)

Substitute the de�nitions for the compensated elasticities (37) and (38) and the de�nition of the share γn ≡
(1+τ)qn
(1−t)nln to �nd:

∂L
∂E

=

ˆ
N

λ∗nuEuc − µ

N
+ η

t

1− t
(1− t)
E

εlEnln + η

(
τ − αµ

η

)
1 + τ

(1− t)
E

γnεqEnln

dF (n) = 0. (66)

Dividing the equation by η
´
N nlndF (n) gives:

´
N λ
∗
ndF (n)

η

´
N λ
∗
n
uE
uc

dF (n)´
N λ
∗
ndF (n)

´
N nlndF (n)

− µ

η
´
N nlndF (n)N

(67)

+
t

1− t
(1− t)
E

´
N εlEnlndF (n)´
N nlndF (n)

+

(
τ − αµ

η

)
1 + τ

(1− t)
E

´
N γnεqEnlndF (n)´
N nlndF (n)

= 0

Using the de�nition for the marginal cost of funds (29), distributional characteristic (32) and δ ≡ (1−t)
´
N nlndF (n) /E

gives:

(1− ξE)

MCF
N

ˆ
N

uE
uc

dF (n) =
µ

η
− δN

[
t

1− t
εlE +

(
τ − αµ/λ̄∗

MCF

1 + τ

)
γεqE

]
, (68)

Substituting (44) gives (47).

Proposition 3 (Second-best constrained optimum) When the government cannot optimize non-individualized
lump-sum transfers, the policy rules for the optimal income tax, pollution tax and environmental quality are given
by:

1− 1

MCF
+

ξl
MCF

=
t

1− t
(−εlt) +

(
τ − αµ/λ̄∗

MCF

)
1 + τ

(−γεqt) , (69)

1− 1

MCF
+

ξq
MCF

=
t

1− t

(
−εlτ
γ̄

)
+

(
τ − αµ/λ̄∗

MCF

)
1 + τ

(
−γεqτ

γ̄

)
, (70)

(1− ξE)N

ˆ
N

uE
uc

dF (n) = MCF ·

µ
η

+ δN

 t

1− t
(−εlE) +

(
τ − αµ/λ̄∗

MCF

)
1 + τ

(−γεqE)

 . (71)

Proof. See equations (54), (62) and (68) in the proof of previous Proposition. These correspond to the optimal
tax expressions for a given level of the non-individualized lump-sum tax T .

Corollary 1 If preferences are given by

un ≡ υ(cn, qn)− h(ln) + Γ(E), υc, υq, h
′,Γ′ > 0, υcc, υqq,−h′′,Γ′′ < 0, ∀n, (72)

where υ(·) denotes total real consumption from clean and dirty commodities, and υ (.) is a linear homogeneous
sub-utility function over clean and dirty commodities, then the optimal income tax is given by t

1−t = ξl
−ε̄lt , the

modi�ed Pigouvian tax equals the �rst-best Pigouvian tax, τ = αµ/λ̄∗, and environmental quality follows the
�rst-best Samuelson rule, N

´
N

uE
uc

dF (n) = µ
η .

Proof. Marginal utility of income is constant, due to the linear homogeneity of υ(·). Due to linear homogeneity,
the �rst-order condition

uq
uc

= 1 + τ can be written as qn = φ(1 + τ)cn where φ(·) is some function with
φ′(·) < 0. Use this in the de�nition for λn gives λn = uc(cn, φ(1 + τ)cn). If the utility function u is linear
homogeneous in cn and qn the derivatives of u are homogeneous of degree zero. Hence, ucccn + ucqqn = 0 and
ucc + ucqφ(1 + τ) = 0. Taking the derivative ∂λn

∂cn
= ucc + ucqφ(1 + τ) = 0 demonstrates that income e�ects

are absent. Therefore, uE
uc

is constant, so that ξE = 0, cf. (32). Furthermore, εlt = γεlτ , which follows from
totally di�erentiating the �rst-order conditions (8), (9), and the utility function (1), and setting the change in
utility to zero in order to �nd the compensated elasticities. To prove this, we write the household problem as a

6



two-stage budgeting problem. In the �rst stage, individuals choose aggregate consumption υn and labor supply
ln to maximize utility un subject to budget constraint p(τ)υn = (1− t)nln +T , where p(τ) is the real price index

for aggregate private consumption υn. This gives �rst-order condition −uluυ
= (1−t)n

p(τ) . To �nd the elasticities,

linearize the �rst-order condition
(
ullln
ul
− uυlln

uυ

)
l̃n =

(
uυυυn
uυ
− ulυυn

ul

)
υ̃n − t̃ − p̃, where a tilde (˜) denotes a

relative change, e.g., l̃n ≡ dln/ln, except for the tax rates, where t̃ ≡ dt/(1− t) and τ̃ ≡ dτ/(1 + τ). When utility
does not change, we have the following linearized utility function uυυnυ̃n + ulln l̃n = 0. Using the �rst-order

condition for labor supply yields θnυ̃n = l̃n, where θn ≡ (1−t)nln+T
(1−t)nln . Solving for l̃n gives l̃n = −εn

(
t̃+ p̃

)
, and

εn ≡
(
ullln
ul
− uυlln

uυ
− 1

θn

(
uυυυn
uυ
− ulυυn

ul

))−1

. In the second stage, households choose to allocate their resources

over clean and polluting commodities to maximize υ(cn, qn) subject to p(τ)υn = cn + (1 + τ)qn. This yields �rst-
order condition

υq
υc

= 1+τ . Since, sub-utility υ is homothetic, linearizing sub-utility υn gives υ̃n = (1− γ) c̃n+γq̃n,

where γ ≡ (1+τ)qn
(1−t)nln+T is constant. The price index satis�es p(τ)υn = cn + (1 + τ)qn. It can be linearized to �nd

p̃ + υ̃n = (1− γ) c̃n + γq̃n + γτ̃ = γτ̃ . Therefore, we �nd for the change in labor supply: l̃n = −εnt̃ − εnγτ̃ ,
where εn is the compensated labor-supply elasticity. Consequently, we establish that εlt ≡ −εn and εlτ ≡ −εnγ.
Finally, it can be derived that

´
N (1− λ∗n)

(
1+τ
1−t

)
qndF (n) =

´
N (1− λ∗n) γnnlndF (n), since γn = γ ≡ (1+τ)qn

(1−t)nln+T

is constant with homothetic preferences and using the �rst-order condition for T from (18). Substitution of all
these results in the �rst-order conditions � equations (54), (62) and (68) � proves the proposition.

3 Optimal non-linear taxation

To solve for the optimal non-linear tax this Appendix proceeds as follows. First, we prove Lemma 1 of the paper.
Second, we prove Proposition 3 of the paper.

3.1 Proof Lemma 1

Lemma 1 The compensated elasticity of labor supply with respect to the marginal income tax rate is:

εlT ′ ≡
∂l∗n
∂T ′

1− T ′(nln)

ln
=

ul/ln

ull +
(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl + nul

T ′′

1−T ′

> 0. (73)

The uncompensated elasticity of earnings with respect to the wage rate is:4

εuzn ≡
∂zn
∂n

n

zn
=

ul/ln + ull −
(
ul
uc

)
ucl

ull +
(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl + nul

T ′′

1−T ′

> 0. (74)

The compensated elasticity of polluting goods demand with respect to the marginal pollution tax rate is

εqτ ′ ≡ −
∂q∗n
∂τ ′

1− τ ′(qn)

qn
= − uq/qn

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

> 0. (75)

The uncompensated (and uncompensated) cross elasticity of labor-supply with respect to demand for polluting
goods, conditional on net income ȳ ≡ z̄ − T (z̄), is

εuql
∣∣
ȳ
≡ ∂qn

∂ln

ln
qn

∣∣∣∣
ȳ

=

(
uq
uc
ucl − uql

)
ln/qn

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

R 0. (76)

3.1.1 Elasticities of labor and earnings supply

The household budget constraint under non-linear policy instruments is given by

cn + qn + τ(qn) = zn − T (zn), ∀n. (77)

Maximizing utility u(cn, qn, zn/n,E) subject to the household budget constraint yields the following necessary
�rst-order conditions:

−ul
uc

= (1− T ′(zn))n,
uq
uc

= 1 + τ ′(qn), ∀n. (78)

4The uncompensated elasticity of earnings with respect to the wage rate is always positive given that earnings should be monotonic
in skills at the optimal second-best allocation. The labor-supply elasticity with respect to the wage rate could be negative, however,
due to o�-setting income and substitution e�ects.

7



As in ?, we can de�ne the following shift function L for labor supply while suppressing the indices n:

L (l, q,n, E, θ, ρ) ≡ n (1− T ′ (nl)− θ)uc (nl − T (nl)− θ (nl − nln) + ρ− q − τ(q), q, l, E)

+ ul (nl − T (nl)− θ (nl − nln) + ρ− q − τ(q), l, q, E) . (79)

L (l, q,n, E, θ, ρ) measures a shift in the �rst-order condition for labor supply when one of the variables l, q, n,E, θ
or ρ changes. θ is introduced to capture an exogenous increase in the marginal tax rate (i.e., for any level of
earnings). ρ is introduced to retrieve the income e�ect when the household receives an exogenous amount of
income ρ, irrespective of the amount of labor supplied. The �rst-order condition for labor supply of the household
n is thus equivalent to L (l, q, n, 0, 0) = 0. Introducing the term θ (nl − nln) has the following intuition. Suppose
that we raise the marginal tax rate � irrespective of income level nl � and we evaluate the impact at nln (the
optimum choice for ln of household n), then this marginal tax increase does not change income, only the marginal
incentives to supply labor. ρ represents the income e�ect: suppose that we give the household a marginal increase
in income of ρ, starting from ρ = 0, what will happen to labor supply?

We �nd the following partial derivatives, using the �rst-order condition −ul = n (1− T ′)uc:

Ll (l, q, E, n, 0, 0) = ull +

(
ul
uc

)2

ucc − 2
ul
uc
ucl + nul

T ′′

1− T ′
, (80)

Lq (l, q, E, n, 0, 0) =
ul
uc

(
ucc

uq
uc
− ucq

)
+ ulq − ulc

uq
uc
, (81)

Ln (l, q, E, n, 0, 0) =

(
−ul
l

+ nul
T ′′

1− T ′
+

(
ul
uc

)2

ucc −
(
ul
uc

)
ulc

)
l

n
, (82)

LE (l, q, E, n, 0, 0) = ulE −
ul
uc
ucE , (83)

Lθ (l, q, E, n, 0, 0) = −nuc, (84)

Lρ (l, q, E, n, 0, 0) = n (1− T ′)ucc + ulc = ulc −
ul
uc
ucc. (85)

Now, by applying the implicit function theorem we derive that

∂l

∂x
= −Lx

Ll
, x = q, n, θ, ρ. (86)

We thus obtain the uncompensated elasticity of labor supply w.r.t. commodity demand q:

εulq ≡
∂l

∂q

q

l
= −Lq

Ll

q

l
=
q

l

ul
uc

(
ucc

uq
uc
− ucq

)
+ ulq − ulc uquc

ull +
(
ul
uc

)2

ucc − 2 ulucucl + nul
T ′′

1−T ′

. (87)

The uncompensated wage elasticity of labor supply εuln is equal to:

εuln ≡
∂l

∂n

n

l
= −Ln

Ll

n

l
=
ul/l +

(
ul
uc

)
ulc −

(
ul
uc

)2

ucc − nul T ′′

1−T ′

ull +
(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl + nul

T ′′

1−T ′

. (88)

Note further that the uncompensated wage elasticity of earnings supply εzn is equal to:

εuzn ≡
∂z

∂n

n

z
= 1 + εln =

ul/l + ull −
(
ul
uc

)
ucl

ull +
(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl + nul

T ′′

1−T ′

. (89)

The income elasticity of labor supply εIl is de�ned as:

εIl ≡ (1− T ′)n ∂l
∂ρ

= − (1− T ′)nLρ
Ll

=

−ul
uc

(
ul
uc
ucc − ulc

)
ull +

(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl + nul

T ′′

1−T ′

. (90)

The compensated wage elasticity of labor supply εln is de�ned residually by the Slutsky equation (εln ≡
εuln − εIl ):

εln ≡
∂l∗

∂n

n

l
=

ul/l − nul T ′′

1−T ′

ull +
(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl − nul T ′′

1−T ′

. (91)
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Next, the compensated tax elasticity of labor supply εlT ′ is:

εlT ′ ≡ −
∂l∗

∂θ

(1− T ′)
l

=
Lθ
Ll

(1− T ′)
l

=
ul/l

ull +
(
ul
uc

)2

ucc − 2 ulucucl + nul
T ′′

1−T ′

. (92)

The compensated tax elasticity of earnings supply εzT ′ equals the compensated tax elasticity of labor supply
(since the wage rate n is not a�ected by an increase in marginal taxes, only labor supply):

εzT ′ ≡ −
∂z∗

∂θ

(1− T ′)
z

= εlT ′ =
ul/l

ull +
(
ul
uc

)2

ucc − 2
(
ul
uc

)
ucl + nul

T ′′

1−T ′

. (93)

Finally, we obtain the uncompensated labor-supply elasticity with respect to environmental quality E:

εlE ≡
∂l

∂E

E

l
= −LE

Ll

E

l
=

(
ul
uc
ucE − ulE

)
E/l

ull +
(
ul
uc

)2

ucc − 2 ulucucl + nul
T ′′

1−T ′

. (94)

3.1.2 Elasticities of commodity demands

We add price p for polluting good q to retrieve the income e�ect in demand for polluting goods in a clear and
transparant way. Later we will normalize the price p back to one. The household budget constraint is then given
by:

cn + pqn + τ(pqn) = zn − T (zn), ∀n. (95)

Maximizing utility u(cn, qn, zn/n,E) subject to the household budget constraint yields the following necessary
�rst-order conditions:

−ul
uc

= (1− T ′(zn))n,
uq
uc

= p(1 + τ ′(pqn)), ∀n. (96)

Follow the same procedure as above. Hence, we can de�ne the following shift function Q for the demand of the
poluting commodity while suppressing the indices n:

Q (l, q, n, E, p, θ, ρ) ≡ p (1 + τ ′ (pq) + θ)uc (nl − T (nl)− pq − τ(pq)− θ (pq − pqn) + ρ, l, q, E)

− uq (nl − T (nl)− pq − τ(pq)− θ (pq − pqn) + ρ, l, q, E) . (97)

Q (l, q, n,E, p, θ, ρ) measures a shift in the �rst-order condition for polluting goods demand when one of the
variables l, q, n, p, θ or ρ changes, while labor supply remains . θ and ρ have the same role as in the shift-function
for labor. θ is introduced to capture an exogenous increase in the marginal tax rate on the polluting commodity
(i.e. for any level of commodity demand). ρ is introduced to retrieve the income e�ect when the household
receives an exogenous amount of income ρ, irrespective of polluting goods demand. The �rst-order condition for
pollution goods demand q of the household n is thus equivalent to Q (l, q, n, E, p, 0, 0) = 0.

We �nd the following partial derivatives, using the �rst-order condition uq = ucp(1 + τ ′(pqn)):

Ql (l, q, n, E, p, 0, 0) =
−ul
uc

(
uq
uc
ucc − uqc

)
+
uq
uc
ucl − uql, (98)

Qq (l, q, n, E, p, 0, 0) = −uqq −
(
uq
uc

)2

ucc + 2

(
uq
uc

)
ucq +

τ ′′

1 + τ ′
puq, (99)

Qn (l, q, n, E, p, 0, 0) = −
(
uq
uc
ucc − uqc

)
ul
uc

l

n
, (100)

QE (l, q, n, E, p, 0, 0) =
uq
uc
ucE − uqE , (101)

Qp (l, q, n, E, p, 0, 0) =

(
uq
q
−
(
uq
up

)2

ucc + uqc
uq
uc

+
τ ′′

1 + τ ′
puq

)
q

p
, (102)

Qθ (l, q, n, E, p, 0, 0) = puc, (103)

Qρ (l, q, n, E, p, 0, 0) = p(1 + τ ′)ucc − uqc =
uqucc
uc

− uqc. (104)

Now, by applying the implicit function theorem we �nd:

∂q

∂x
= −Qx

Qq
, x = l, n, E, p, θ, ρ. (105)
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Hence, from this we can calculate the elasticities. From here on, we assume again that p = 1 everywhere.
The uncompensated elasticity of commodity demands with respect to labor supply is given by:

εuql ≡
∂q

∂l

l

q
= −Ql

Qq

l

q
=
l

q

−ul
uc

(
uq
uc
ucc − uqc

)
+

uq
uc
ucl − uql

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

. (106)

The uncompensated elasticity of commodity demands with respect to the wage rate is:

εuqn ≡
∂q

∂n

n

q
= −Qn

Qq

n

q
=
l

q

−ul
uc

(
uq
uc
ucc − uqc

)
uqq +

(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

. (107)

The uncompensated price elasticity of commodity demand εqp is equal to:

εuqp ≡ −
∂q

∂p

p

q
=
p

q

Qp
Qq

= −
uq
q −

(
uq
up

)2

ucc + uqc
uq
uc

+ τ ′′

1+τ ′uq

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

. (108)

The income elasticity of commodity demand εIq is de�ned as:

εIq ≡ (1 + τ ′) p
∂q

∂ρ
= − (1 + τ ′) p

Qρ
Qq

=

uq
uc

(
uq
uc
ucc − uqc

)
uqq +

(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

. (109)

Hence, using the Slutsky equation (εuqp = εqp−εIq) the compe=nsated price elasticity of demand for commodity
q is determined residually:

εqp = −∂q
∗

∂p

p

q
= −

uq/q + τ ′′

1+τ ′ puq

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

. (110)

The compensated tax elasticity of commodity demand εqτ ′ is equal to:

εqτ ′ ≡ −
∂q∗

∂θ

(1 + τ ′)

q
=

(1 + τ ′)

q

Qθ
Qq

= − uq/q

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

. (111)

And, the uncompensated elasticity of demand of polluting goods with respect to environmental quality is:

εuqE ≡
∂q

∂E

E

q
= −QE

Qq

E

q
=

(
uq
uc
ucE − uqE

)
E/q

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′ puq

. (112)

3.1.3 Elasticities of conditional commodity demands

Finally, we evaluate the �rst-order condition for q and c for a given level of net income ȳ ≡ z̄ − T (z̄). First, the
shift function for commodity demands is now modi�ed to:

Q (l, q, p, n, 0, 0|ȳ) ≡ p (1 + τ ′ (pq))uc (z̄ − T (z̄)− (pq + τ(pq)) , l, q, E)− uq (z̄ − T (z̄)− (pq + τ(pq)) , l, q, E) .
(113)

Therefore, we can derive:

Qq (l, q, n,E, p, 0, 0|ȳ) = −uqq −
(
uq
uc

)2

ucc + 2

(
uq
uc

)
ucq +

τ ′′

1 + τ ′
puq, (114)

Ql (l, q, n,E, p, 0, 0|ȳ) = p(1 + τ ′)ucl − uql =
uq
uc
ucl − uql, (115)

Qn (l, q, n,E, p, 0, 0|ȳ) = −p(1 + τ ′)ucl
l

n
+ uql

l

n
= −

(
uq
uc
ucl − uql

)
l

n
(116)

QE (l, q, n, E, p, 0, 0) =
uq
uc
ucE − uqE , (117)
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where we obtained the derivative Qn by substituting l = z/n in the modi�ed shift function. Hence, by applying
the envelope theorem we �nd (assuming p = 1 throughout):

εuql
∣∣
ȳ
≡ ∂q

∂l

l

q

∣∣∣∣
ȳ

= − Ql
Qq

l

q

∣∣∣∣
ȳ

=

(
uq
uc
ucl − uql

)
l/q

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

, (118)

εuqn
∣∣
ȳ
≡ ∂q

∂n

n

q

∣∣∣∣
ȳ

= − Qn
Qq

n

q

∣∣∣∣
ȳ

= −

(
uq
uc
ucl − uql

)
l/q

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′uq

= − εql|ȳ , (119)

εuqE
∣∣
ȳ
≡ ∂q

∂E

E

q

∣∣∣∣
ȳ

= − QE
Qq

E

q

∣∣∣∣
ȳ

=

(
uq
uc
ucE − uqE

)
E/q

uqq +
(
uq
uc

)2

ucc − 2
(
uq
uc

)
ucq − τ ′′

1+τ ′ puq

. (120)

We note two things here. First, we �nd εuql

∣∣∣
ȳ

= − εuqn
∣∣
ȳ
. Second, the uncompensated and compensated elasticities

of the conditional commodity demands are the same, see ? for the formal proof.

3.2 Proof Proposition 4

Proposition 4 The optimal non-linear marginal income tax schedule is given by the ABC-formula:

T ′(zn)

1− T ′(zn)
=

1

εlT ′︸︷︷︸
≡An

´ zn
zn

(1− λ∗n)f̃(zm)dzm

1− F̃ (zn)︸ ︷︷ ︸
≡Bn

1− F̃ (zn)

znf̃(zn)︸ ︷︷ ︸
≡Cn

, ∀zn 6= zn, zn, (121)

The marginal cost of public funds equals one at the optimal tax system:

MCF ≡ η´
N Ψ′λn + ηtn ∂ln

∂(−T (0)) + (ητ − αµ) ∂qn
∂(−T (0))f(n)dn

= 1. (122)

The optimal non-linear marginal pollution tax is given by:(
τ ′(qn)− αµ

η

1 + τ ′(qn)

)
εqτ ′ = − T ′(zn)

1− T ′(zn)
εlT ′

εlq|ȳ
εuzn

, ∀zn. (123)

Optimal provision of environmental quality satis�es:

N

ˆ
N

uE
uc

(1 + ∆n) f(n)dn =
µ

η
, (124)

where

∆n ≡
T ′(zn)

1− T ′(zn)

εlT ′

εuzn

∂ ln(uE/uc)

∂ ln ln
. (125)

The proof proceeds in a number of steps. First, we set up the maximization problem and derive the �rst-
order conditions. Second, we will manipulate each �rst-order condition using the elasticities derived in Lemma
1. Third, we collect all rewritten �rst-order conditions to establish the various parts of the Proposition.

3.2.1 First-order conditions

We can invert the utility function to write cn as a function c(qn, ln, un, E) of the allocation:

cn = c(qn, ln, un, E),
∂cn
∂qn

= −uq
uc
,

∂cn
∂ln

=
−ul
uc

,
∂cn
∂un

=
1

uc
,

∂cn
∂E

= −uE
uc
, (126)

where the derivatives are found using the implicit function theorem.
The government thus solves the following maximization problem:

max
{ln,qn,un,E}

N

ˆ
N

Ψ(un)dF (n), (127)

s.t. N

ˆ
N

(nln − c(qn, ln, un, E)− qn) dF (n) = R, (128)

dun
dn

= − lnul(c(qn, ln, un, E), qn, ln, E)

n
. (129)
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After integrating the incentive-compatibility constraint (129) by parts, the Lagrangian for maximizing social
welfare can be formulated as

max
{ln,qn,un,E}

L ≡
ˆ
N

(
Ψ(un) + η

(
nln − c(qn, ln, un, E)− qn −

R

N

))
f(n)dn (130)

− µ
(
E − E0

N
+ α

ˆ
N
qndF (n)

)
+

ˆ
N

(
θn
lnul(c(qn, ln, un, E), qn, ln, E)

n
− un

dθn
dn

)
dn+ θnun − θnun,

where θn is the Lagrangian multiplier associated with the di�erential equation for utility (129). η is the Lagrangian
multiplier on the economy's resource constraint and µ is the multiplier on the environmental technology. The
�rst-order conditions with respect to ln, qn, un, and E are given by:

∂L
∂ln

= η

(
n− ∂cn

∂ln

)
f (n) +

θnul
n

(
1 +

lnull
ul

+
lnulc
ul

∂cn
∂ln

)
= 0, ∀n, (131)

∂L
∂qn

= −η
(

1 +
∂cn
∂qn

)
f(n)− µαf(n) +

θnln
n

(
ulc

∂cn
∂qn

+ ulq

)
= 0, ∀n, (132)

∂L
∂un

=

(
Ψ′ − η ∂cn

∂un

)
f (n) +

θnul
n

lnulc
ul

∂cn
∂un

− dθn
dn

= 0, ∀n 6= n, n, (133)

∂L
∂un

= −θn = 0,
∂L
∂un

= θn = 0, (134)

∂L
∂E

=

ˆ
N

[(
− µ
N
− η ∂cn

∂E

)
f(n) +

θnln
n

(
ulE + ulc

∂cn
∂E

)]
dn = 0. (135)

These �rst-order conditions are rewritten in an number of steps.

3.2.2 Rewriting the �rst-order condition for ln

By substituting ∂cn/∂ln = −ul/uc = (1− T ′)n from (126), the �rst-order condition for ln (131) can be written
as:

T ′(zn)

1− T ′(zn)
=
ucθn/η

nf (n)

(
1 +

lnull
ul
− lnulc

uc

)
. (136)

Next, use the de�ntions for the elasticities εuln, εlT ′ , ε
u
zn and εzT ′ from (88), (92), (89) and (93) to derive that

the elasticity term in (136) equals:

1 +
lnull
ul
− lnulc

uc
=

1 + εuln
εlT ′

=
εuzn
εzT ′

. (137)

Using (137) in (136) then gives the following formula for the income tax:

T ′(zn)

1− T ′(zn)
=
ucθn/η

nf (n)

(1 + εuln)

εlT ′
=
ucθn/η

nf (n)

εuzn
εzT ′

. (138)

3.2.3 Rewriting the �rst-order condition for qn

By substituting ∂cn/∂qn = −uq/uc = − (1 + τ ′(qn)) from (126), the �rst-order condition for qn can be rewritten
as:

τ ′(qn)− αµ
η

1 + τ ′(qn)
=
ucθn/η

nf(n)

ln
uq

(
uq
uc
ulc − ulq

)
. (139)

Next, combine the de�ntions for εql|ȳ from (118) and εqτ ′ from (111) to �nd:

ln
uq

(
uq
uc
ucl − uql

)
= −

εuql

∣∣∣
ȳ

εqτ ′
. (140)

Hence, substituting (140) in (139) gives the following expression for the pollution tax rate:

τ ′(qn)− αµ
η

1 + τ ′(qn)
= −ucθn/η

nf(n)

εuql

∣∣∣
ȳ

εqτ ′
. (141)

Use (138) in (141) to �nd the optimal non-linear pollution tax in the Proposition:(
τ ′(qn)− αµ

η

1 + τ ′(qn)

)
εqτ ′ = − T ′(zn)

1− T ′(zn)
εzT ′

εulq

∣∣∣
ȳ

εuzn
. (142)
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3.2.4 Solution for ucθn/η

We will solve for ucθn/η, which enters the optimal income tax on the right-hand side of (138). First, rewrite the
�rst-order condition for the level of utility un (133) using ∂cn/∂un = 1/uc from (126) to �nd:

uc
η

dθn
dn

=

(
Ψ′uc
η
− 1

)
f (n) +

ucθn/η

n

lnulc
uc

. (143)

We de�ne a composite multiplier Θn, and substitute ln ≡ zn/n:

Θn ≡
uc(cn, qn, ln, E)θn

η
=
uc(cn, qn, zn/n,E)θn

η
. (144)

Θn has total derivative:

dΘn

dn
=

dθn
dn

uc
η
− θn

η

uclln
n

+
θn
η
ucc

dcn
dn

+
θn
η

ucl
n

dzn
dn

+
θn
η
ucq

dqn
dn

+
θn
η
ucE

dE

dn
. (145)

Note that dE
dn = 0 since environmental quality is the same for everyone.

Totally di�erentiate the household budget constraint (77) and use the �rst-order conditons (78) to �nd:

dcn
dn

= (1− T ′(zn))
dzn
dn
− (1 + τ ′)

dqn
dn

=
−ul
nuc

dzn
dn
− uq
uc

dqn
dn

. (146)

Therefore, substitution of (146) in (145) yields:

dΘn

dn
=

dθn
dn

uc
η
− θn

η

uclln
n

+
θn
nη

(
ucl −

uccul
uc

)
dzn
dn

+
θn
η

(
uccuq
uc

− ucq
)

dqn
dn

. (147)

Next, use the income elasticity of labor supply εIl in (90) and the tax elasticity of labor supply εlT ′ in (92) to

�nd an expression for
(
ucl − uccul

uc

)
:

ulc −
ulucc
uc

=
εIl

n(1− T ′)
−ul
lεlT ′

. (148)

Similarly, use the income elasticity for commodity demands (109), the tax elasticity of commodity demands
εqτ ′ (111), and use

uq
uc

= 1 + τ ′ to derive an expression for (
uccuq
uc
− ucq):

uq
uc
ucc − uqc = −

εIq
(1 + τ ′)qn

uq
εqτ ′

. (149)

Thus, substituting (148) and (149) into (147) results in:

dΘn

dn
=

dθn
dn

uc
η
− θn

η

uclln
n

+
εIl

(1− T ′)
−ul
n

θn/η

n

εuzn
εlT ′
− θn
nη

εIq
(1 + τ ′)

uq
εuqn
εqτ ′

. (150)

Use the �rst-order condition for ln (138) to derive:

T ′(zn)f (n) =
−ul
n

θn
nη

εuzn
εlT ′

. (151)

And, use εuqn
∣∣
ȳ

= − εuql

∣∣∣
ȳ
in the �rst-order condition for qn (141) to derive:

(
τ ′(qn)− αµ

η

)
f(n) =

θn/η

n
uq
εuqn
εqτ ′

. (152)

Note that εuqn
∣∣
ȳ

= εqn because the �rst-order condition for qn is evaluated for a given level of net income yn,

since the latter is pinned down by the �rst-order condition for ln.
Substitution of (151) and (152) in (150) gives:

dΘn

dn
=

dθn
dn

uc
η
− θn

η

uclln
n

+
εIl

(1− T ′)
T ′f(n) +

εIq
(1 + τ ′)

(
τ ′ − αµ

η

)
f(n). (153)

And, substution of the income elasticities from (90) and (109) in (153) gives:

dΘn

dn
=

dθn
dn

uc
η
− θn

η

uclln
n

+ nT ′(zn)
∂ln
∂ρ

f(n) +

(
τ ′(qn)− αµ

η

)
∂qn
∂ρ

f(n). (154)
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By combining (143) and (154) we can rewrite the �rst-order condition for un as

dΘn

dn
=

(
Ψ′(un)uc

η
+ nT ′(zn)

∂ln
∂ρ

f(n) +

(
τ ′(qn)− αµ

η

)
∂qn
∂ρ

f(n)− 1

)
f(n). (155)

Integrating (155), using a transversality condition from (134) yields the solution for Θn:

Θn =
ucθn
η

=

ˆ n

n

(1− λ∗m) f(m)dm, (156)

where

λ∗m ≡
Ψ′(um)uc

η
+mT ′(zm)

∂lm
∂(−T (0))

+

(
τ ′(qm)− αµ

η

)
∂qm

∂(−T (0))
. (157)

Note that the income e�ects of an increase in the intercept −T (0) is the same as the income e�ect of an increase
in exogenous income ρ. Consequently, substituting (156) in (138) gives the optimal tax expression:

T ′(zn)

1− T ′(zn)
=

1

εlT ′

´ n
n

(1− λ∗m) f(m)dm

1− F (n)

(1− F (n))εuzn
nf (n)

. (158)

Finally, use the trick by ? to write the optimal tax formula in terms of earnings densities making use of the
fact that F̃ (zn) ≡ F (n) so that

f̃(zn)znε
u
zn = nf(n), (159)

1− F (n) =

ˆ n

n

f(n)dn =

ˆ zn

zn

f̃(zn)dzn = 1− F̃ (zn). (160)

Hence, using (159) and (160) in (158) yields the optimal income tax as in the Proposition:

T ′(zn)

1− T ′(zn)
=

1

εlT ′

´ zn
zn

(1− λ∗m) f̃(zm)dzm

1− F̃ (zn)

(1− F̃ (zn))

z̃nf̃(zn)
. (161)

3.2.5 Marginal cost of public funds

Use the �rst transversality condition (134) to solve for Θn = 0:

Θn =
ucθn
η

=

ˆ n

n

(1− λ∗m) f(m)dm = 0. (162)

Hence, using the de�nition of λ∗n from (157), we �nd the marginal cost of funds as in the Proposition:

MCF ≡ η´
N Ψ′λn + ηtn ∂ln

∂(−T (0)) + (ητ − αµ) ∂qn
∂(−T (0))f(n)dn

= 1. (163)

3.2.6 Optimal provision of environmental quality

Use ∂cn
∂E = −uEuc in �rst-order condition (135) and rewrite:

N

ˆ
N

uE
uc

[
1 +

ucθn/η

nf(n)

(
lnulE
uE

− lnulc
uc

)]
f(n)dn =

µ

η
. (164)

De�ne

∆n ≡
ucθn/η

nf(n)

(
lnulE
uE

− lnulc
uc

)
. (165)

Use the optimal income tax (138), and note that lnulE
uE
− lnulc

uc
= ln

uE
∂uE
∂ln
− ln

uc
∂uc
∂ln

= ∂ ln(uE/uc)
∂ ln ln

to �nd

∆n =
T ′(zn)

1− T ′(zn)

εzT ′

εuzn

(
∂ ln(uE/uc)

∂ ln ln

)
(166)

Consequently, substituting (166) in (164) yields optimal environmental quality as in the Proposition:

N

ˆ
N

uE
uc

(1 + ∆n) f(n)dn =
µ

η
. (167)
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