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1 Model

Individuals maximize utility:
Un = U(Cn, Gy lns By Ue, Ugy, —Up, up > 0, Uee, Uit, Ugq, Upe < 0,  Vn. (1)
subject to their budget constraints:
ecn+ (1 +7)gn =1 —t)nl, +T, Vn. (2)
The Lagrangian for utility maximization is
L=ulcn, qnyln, B) + A [(1—=t)nlp +T —cr — 1+ 7)qn], Vn, (3)

where )\, is the Lagrange multiplier on the household budget constraint and it denotes the marginal utility of
income.

Households take environmental quality E as given when deciding on their consumption plans. First-order
conditions are:?

o =) =M =0, i, (4)
%:uq(.)f)\n(lJrr):O, Vn (5)

% =u(-)+ A (1—¢t)n =0, Vn, (6)

gi =(1—tnl, +T —c, — (1+7)g, =0, Vn. (7)

From these equations follow equations (3) and (4) in the text:

—uy

= 1 —
o (L=t)n, Vn, (8)
Uq
=1 .
w +7, Vn (9)

The indirect utility function is designated by v, = v(T,t, 7, E) = u(én, ¢n, ln, F), ¥n, where hats denote optimized
values of each commodity and labor supply. Application of Roy’s identity produces the following derivatives of
the indirect utility function:

ovp,
T An, Vn, (10)
vy,
- _ 11
5 Anniln, Vn, (11)
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IStrict quasi-concavity of the utility function ensures that second-order conditions for a maximum are fulfilled under linear
instruments. When non-linear instruments are employed, additional single-crossing and monotonocity conditions need to be satisfied
too. See the later derivations using non-linear taxes.



= *)\n ny ) 12
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ovy, Ug
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55 An o Vn (13)

Environmental quality (E) is a linear function of aggregate consumption of dirty goods:
E=E) - aN/ gndF(n), Ey, a>0, (14)
N

The government maximizes a Bergson-Samuelson social welfare function, which is a concave sum of individual
utilities:
N/ W(un)dF(n), W(un) >0, U (uy)<0. (15)
N

subject to the government budget constraint:

N / (tnly + 7g)AF(n) = NT + R. (16)
N

2 Optimal linear taxation

The Lagrangian for maximizing social welfare is given by (where the whole expression has been divided by the
population size N to save on notation):

{T?g’zich} L= g U(v(T,t, 7, FE))dF(n) (17)

+7 (/N(tnln +7¢,)dF(n) =T — ﬁ) —u (E ;VEO + a/NqndF(n)) .

The Lagrange multiplier  denotes the marginal social value of public resources and the Lagrange multiplier p
denotes the marginal social cost per capita (measured in social welfare units) of providing a better environmental
quality F.

The first-order conditions for an optimal allocation are given by:

gé:/j\/[\lﬂ)\ 77+ntnng + (nT —ap )(ZT}dF( ) =0, (18)
a@—f = /N [ nlp, U\, + nnl, +77tn%lt + (T — au)aat ] dF(n) = (19)
g—f = /N [—qn\If’An +n0gn + ntn% + (7 — au)%q:} dF(n) =0, (20)
% -/ BEW - £ gZE + (7 — ap) ng”] dF(n) =0, (21)

where the derivatives of the indirect utility function (10) — (13) are used in each subsequent expression.?

The optimal income tax, the optimal environmental tax, and the optimal provision of environmental quality
are derived by employing the Slutsky equations for labor supply, the demand for the dirty commodity, and the
demand for environmental quality:

oL, ol o,

or = or ~Mngpe . (22)
%:aaqf ”?9% i, (23)
Oy _ Oy updln (26)

OF ~ OFE ' w. OT’

Oqn _ 0ay  up Odn
9E ~ 0E T u or ™ @0

2We always assume that the solution to the optimal tax problem is interior and that second-order conditions are met.



The asterisks denote the compenated changes of the demand and supply functions.?

In order to interpret the first-order conditions, we will employ the following definitions.

Definition 1 The social marginal value of transferring a marginal unit of income to individual n is:

ol, dqn
= — —_—. 2
A5 An + ntn——= 5T T (nT — aw) 3T (28)
Definition 2 The marginal cost of public funds is:
MCF =n/\*, X\ z/ N dF(n). (29)
N

Definition 3 The distributional characteristics of labor income &, polluting goods consumption &, and environ-
mental quality g are defined as:

f/\/ A zpdF (n f/\f ArdF (n fN 2 dF( ) _cov (A%, 2]

== T dF n) [ 2ndF (n) =" 7%z 0 (30)
¢ = f/\/ N gndF (n fN)\*dF ) [y @ndF(n) __cov LA;,qn] (31)
“ fN)\ dF(n) [\ gndF(n) g
gE:ffN/\*UEdF fN/\*dF fNuEdF 77C0V [A;kw uE} (32)
= T MadF(n) [y Z=dF (n) NEE

where ZEfNanF( , = fNQndF UE _fN UEdF

Definition 4 The compensated elasticities of labor supply and polluting commodity demand with respect to the
income tax, the corrective tax and environmental quality are defined as:

cw= e <0, (33)
Eqt = aaif‘lq;t, (34)
Elr = (‘;lf IZLT, (35)

Eqr = %‘IE 1;;7 <0, (36)

glg = %ZE’ (37)
g({bf o (38)

Proposition 1 (First-best optimum) In first best, all redistribution occurs through individualized lump-sum tazes,
the marginal income tax rate is set to zero (t = 0), the marginal cost of public funds equals unity (MCF = 1),
and the optimal corrective tax satisfies the first-best Pigouvian tax rate:

o

T=% (39)

Moreover, the Pigouvian tax sustains a first-best level of environmental quality:

UR I
N | —dF(n)=~-. 40
A = (40)

Proof. When individualized lump-sum transfers and taxes are available, all inequality can be eliminated so as
to equalize the social marginal value of income (A}) across agents. Consequently all distributional terms are zero
(& = &; = &g = 0). Moreover, from (18) follows MCF = 1. Substitution in (54), (62) and (68) yields:

OZL(_FH)‘F(TZ?F*MZS\*)

11 (—7qt) - (41)

3To compute the income effect of the change in environmental quality, the property has been used that “—E measures the marginal

change in (virtual) income when environmental quality improves by one unit, see ?



R )

i t T — a,u/j\*
N[ “Ear — — 6N _ . 43
N Ue (n) = {l—tElE—'_( 147 )75(1}3] (43)
Solving the first two equations yields ¢ = 0 and 7 = au/\*. From the last equation follows that N Iy WEdF(n) =
S
n

Proposition 2 (Second-best full optimum) The policy rules for the optimal transfer, income taz, pollution tazx
and environmental quality are given by:

MCF =1, (44)
6= 1 )+ D (45)
_ ot (' | (T —ap/N) [ FEg
5q_1—t< 7)+ 1+7 < 7)’ (46)
(=N [ Z—de(n) = % +ON (1t_t(—am) + W(—w)) , (47)

where v, = ((1 +tT))nql" is the net expenditure share of polluting commodities in net labor income, 7 = UN 'ynnlndF(n)] X

UN nl,dF(n )] denotes the income-weighted average of v, § = (1 —t) fN nl,dF (n) /E measures the ratio of

net labor income to environmental quality, and 255 = | [, exjnlndF(n)] [ [ nlndF(n)] s the income-weighted
average of the elasticity e,;, x =1,q, j =1, 7, F.

Proof. Optimal transfers — Substituting definition 2 for M CF in the first-order condition of the lump-sum
transfer in equation (18) yields

ol, dqn
//\/ '\, +ntnaT (nT — ap) — 5T dF(n) =n. (48)

=X%

Rewriting gives (44).
Optimal income taxes — Substituting the Slutsky equations (22) and (23) in equation (19) yields:

oc _ , o, ol o, . B
i /N [ nlp, W'\, + nnl, +ntn ( 5t nly (?T) (nT — ap) ( 5t nly 5T dF(n) = 0. (49)

Rewriting gives:

oL oly, gy, ol aq;, B
i /N (\IJ An + Ntn——— 5T + (T —ap)—=— 3T )nl + nnl, + ntn 5t + (nT — ap) Y dF(n) = 0. (50)

=X%

Next, multiplying the third term with 1 = E t; > and the fourth term with 1 = 81:; ZZ 8 3 Zi" and rewriting

yields:

ol 1 —t (T—%) p (A+7)an 9gp 1~

oL + n
g "(1—-t)nl, Ot qy,

at

t
= / =X, +nnl, + 1 nl,
N
Substitute the definitions for the compensated elasticities (33) and (34) and the definition of the share ~, =

((11 +tT))nql” to find:

oL t (T -5
hdaduu * F(n)=0. 2
o /N —Arnl, + nnly, —|—771 nl n€it +1m = nlyyneq | dF(n) =0 (52)
Dividing the equation by 7 [, nl,dF(n) gives:
fN N:dF(n) [y AanlndF(n) t [y nlnendF(n) N (’7’ — %) Sy tlnmegrdF(n) 0. (53)
n Sy AdF(n) [y nlndF(n) 11—t [\ nl,dF(n) 147 [y nlndF(n) 7



Using the definition for the marginal cost of funds (29) and distributional characteristic (30) gives

ap/\*
1 t (T ~ MCF )

voF Paror 1o Ut

T (). (54)
Substituting (44) gives (45).
Optimal pollution taxes — Substituting the Slutsky equations (24) and (25) in equation (20) yields
oL ol al., oq; Oqn
= —@n V' A+ 1 + 0t L o - - dF 0, 55
5y /N{q +1q +77”(ar q8T>+(nT au)(aT aTﬂ (n) = (55)
Rewriting gives:

or e Al PN L, _ 94 _
o~ ), <\IJ An + mtn T + (nT — ap) (‘3T)qn + ng, + ntn o + (nT — ap) o dF(n) = 0. (56)

=A%

Next, multiplying the third term with 1 = {40 @ (1=0) L

TF7) g (1= )f and the fourth term with 1 = 813 % and rewriting
yields:

&
3
I~

oL t (1 —t)nl, O 1+ 7 (T - anu) ogr1+7
—_— = * n n F = 0.
or /N ~Ann F 114+ g (1 +7)qn OT Iy 147 ™57 Gn dF(n) =0 (57)

Substituting the definitions for the compensated elasticities (35) and (36) and the definition of the share -,
A4+7)gn .

(T—iynl. 8ives:

ap
oL t e (T - 7)
= X gn - - ni 2 gnEer | AF =0.
5, /N nn 0G0 0T G0 TS e (n) =0 (58)
Dividing the equation by 7 [, nl,dF(n) gives:
G_M&MW J XyandF(n) )@
n Sy ARdE(n) [y andF(n) ) (
. (7= 2) (1= 1) [ runtucsrdF(n) _
I+7 (147) [ynl.dF(n)

1-¢\ Q- (Q-t) t __ (T**> 1—t) [y nnlneg-dF (n)
<1_ )(1+T)7 TS i ~

—t) [y mnlndF(n)  (1—t)

t jk/nl el dF(n )
T) fN nl,dF(n)

(1+7)1—t [ nl,dF(n )‘

=0. 60

MCF I+7 (147) [ynl,dF(n) (60)

Using gn = {157 mnln, the definition for the marginal cost of funds (29), the distributional characteristic (31)
and dividing by (11 +:)) gives:

1 1-&)\ N t  [yewrnl,dF(n) N (T - %) Sy MmEgrnlndF (n)
MCF) " " 1=t [ nl,dF(n) 1+7

=0. 61
[ nlndF(n) (61)
Rewriting yields:

ap/\*
1 1 n & 1 _&r n (T_ MCF) _ Veqr
MCF MCF 1—t 5 vy )

62
5 14+ 7 ( )
Substituting (44) gives (46).

Optimal environmental quality — Substituting the Slutsky equations (26) and (27) in equation (21) yields

oc UE o,y M ol ulai B 0q;  ug Ogn B
GE/NLCM" N+nm(aE+ ) (nr au)( i )]dF() 0

oT

Rewriting gives:
or _ O (o OaNus _p OGO
9E /N (\If An +7}tn6T (nT — aw) 8T> w. N +ntnaE + (npT — ap) 55 dF(n) =0. (64)




Next, multiplying the third term with 1 = %8:35—" and the fourth term with 1 = %E 173 Z" 8 32; and

rewriting yields:

oL ugp W t (1—-t)nl, ol E (T - *) (1—t)nl, (1+71)g, Oqf E

_ \ e M n & In Z | qF(n) =0. (65
o0 Jy|"mwe N B oEL " 14 E - (—fnl, 9F g, | T (65)
Substitute the definitions for the compensated elasticities (37) and (38) and the definition of the share ~,, =

((11 +tT))nql" to find:

%_ ug t (1-
9 Jy | w. NTTi-t E

Dividing the equation by 7 [, nl,dF(n) gives:

[y AndF(n) Sy An“EdF (n) - ’
U Sy AndF(n )anzndFm) 1 [y nlndF(n) N
t (1—t) [yapnindF(n) (T_ *) 1—t) [\ neqrnlndF (n)

—0
Tt E [onldF(n) | 1+r B JynldF(n)

(67)

Using the definition for the marginal cost of funds (29), distributional characteristic (32) and § = (1-t) [, nl,dF (n) /E
gives:

ap/N*
(1-¢n) up _H t T — NfCF

Y TeTa N Uc w, ) = 7 R e e A (68)
Substituting (44) gives (47). =

Proposition 3 (Second-best constrained optimum) When the government cannot optimize non-individualized
lump-sum transfers, the policy rules for the optimal income taz, pollution tax and environmental quality are given

by:
ap/\*
1 & t (T* MC’F)
1 - = —_— —
+ (—&w) + - (

MCF ' MCF 1—t
ap/\*
I T I S +(T_”?CF> — (70)
MCF  MCF 1—t 5 ’

—Veqt) (69)

ol 1+ 0l
t - Sier
1 _
(1—¢g)N —dF =MCF - |=4+0N | —(— - 7 (- . 1
&) N [ 2 CF- |24 0N | {5 (-55) + e (—7em) ()

Proof. See equations (54), (62) and (68) in the proof of previous Proposition. These correspond to the optimal
tax expressions for a given level of the non-individualized lump-sum tax 7. =

Corollary 1 If preferences are given by
Up = U(Cny qn) — h(ly) + T(E), ve,vg, B, T >0,  Vce,vqq, —h", T <0, Vn, (72)

where v(-) denotes total real consumption from clean and dirty commodities, and v (.) is a linear homogeneous

sub-utility function over clean and dirty commodities, then the optimal income tax is given by ﬁ = 7€l , the

modified Pigouvian tax equals the first-best Pigouvian tax, 7 = au/\*, and environmental quality follows the
first-best Samuelson rule, NfN Z—EdF(n) = %

Proof. Marginal utility of income is constant, due to the linear homogeneity of v(-). Due to linear homogeneity,
the first-order condition Z—z = 1+ 7 can be written as ¢, = ¢(1 + 7)c, where ¢(-) is some function with
#'(-) < 0. Use this in the definition for )\, gives A\, = wu.(cn, (1 + 7)c,). If the utility function u is linear
homogeneous in ¢, and ¢, the derivatives of u are homogeneous of degree zero. Hence, ucccp + Ucqqn = 0 and
Uee + Uegp(1 + 7) = 0. Taking the derlvatlve Rn — gy UcqP(1l + 7) = 0 demonstrates that income effects
are absent. Therefore, Z—E is constant, so that 5 g = 0, cf. (32). Furthermore, ;; = e, which follows from
totally differentiating the first-order conditions (8), (9), and the utility function (1), and setting the change in
utility to zero in order to find the compensated elasticities. To prove this, we write the household problem as a



two-stage budgeting problem. In the first stage, individuals choose aggregate consumption v,, and labor supply
l,, to maximize utility w,, subject to budget constraint p(7)v, = (1 —t)nl,, + T, where p(7) is the real price index

for aggregate private consumption v,. This gives first-order condition —* = %. To find the elasticities,

Uy Uy uy

linearize the first-order condition (% - w) l, = (M - M) Op — t — p, where a tilde (7) denotes a

relative change, e.g., I, = dl,, /l,,, except for the tax rates, where i = dt/(1 —t) and 7=dr/(1+4 7). When utility
does not change, we have the following linearized utility function w,v,0, + wl,l, = 0. Using the first-order

condition for labor supply yields 6,3, = l,, where 6,, = % Solving for I,, gives I, = —&, (f +§), and
-1
En = (% - “u—ll — Qi (“uiv" — %)) . In the second stage, households choose to allocate their resources

over clean and polluting commodities to maximize v(cy, ¢,) subject to p(7)v, = ¢p + (1 + 7)gp. This yields first-
order condition =% = 1+7. Since, sub-utility v is homothetic, linearizing sub-utility v, gives 0, = (1 =) én+7Gn,

c
— (1+7—)Q71
— (A-t)nl,+T

P+ U, = (1 —7)¢ +YGn + 77 = 7. Therefore, we find for the change in labor supply: ln = —ent — eny7 ,
where ¢, is the compensated labor-supply elasticity. Consequently, we establish that ¢y = —¢,, and g;;, = —e&,,7.

Finally, it can be derived that [, (1 — A}) (11'%;) qndF(n) = [, (1 =A%) ynnl,dF(n), since v, = v = (1(_1:)%

is constant with homothetic preferences and using the first-order condition for 7" from (18). Substitution of all
these results in the first-order conditions — equations (54), (62) and (68) — proves the proposition. m

where is constant. The price index satisfies p(7)v,, = ¢, + (1 + 7)g,. It can be linearized to find

3 Optimal non-linear taxation

To solve for the optimal non-linear tax this Appendix proceeds as follows. First, we prove Lemma 1 of the paper.
Second, we prove Proposition 3 of the paper.

3.1 Proof Lemma 1
Lemma 1 The compensated elasticity of labor supply with respect to the marginal income tax rate is:

_olx 1 —T'(nly) uy/ly,

e = = > 0. (73)
oT’ l 2 "
n wy + (Z—i) Uee — 2 (1%) Uel + nul%
The uncompensated elasticity of earnings with respect to the wage rate is:*
uy
Dz, n w1y +uy — (17) Uel
€y = =——= > 0. 74
= (74

2
wy + (%) Uee — 2 (%) Uel + MUy T
The compensated elasticity of polluting goods demand with respect to the marginal pollution tax rate is

9g: 1 — 7' (gn n
e = 1 =Tan) o/ > 0. (75)

87_/ dn u 2 u "
~a — Za — T
Ugq + (uc) Uge — 2 (Uc ) Ucq 1+ Uq

The uncompensated (and uncompensated) cross elasticity of labor-supply with respect to demand for polluting
goods, conditional on net income §y =z —T(Z), is

(%Zucl - uql) ln/Qn

= 2
7 ug o (1) y,, — o
Yo ugq Tt (uc> Uce — 2 (uc) Ueq — 1177 Uq

0 In

g%l =
itly Ay qn

Z 0. (76)

3.1.1 Elasticities of labor and earnings supply

The household budget constraint under non-linear policy instruments is given by
ent+ qn+7(qn) = 20 —T(2,), Vn. (77)

Maximizing utility u(cp, gn, 2n/n, E) subject to the household budget constraint yields the following necessary

first-order conditions:
Y (=T (z))n, L =1+47(q), VYn. (78)

Ue Ue

4The uncompensated elasticity of earnings with respect to the wage rate is always positive given that earnings should be monotonic
in skills at the optimal second-best allocation. The labor-supply elasticity with respect to the wage rate could be negative, however,
due to off-setting income and substitution effects.



Asin 7, we can define the following shift function L for labor supply while suppressing the indices n:

L{l,gn,E,0,p)=n(1—=T (nl) =) uc.(nl —T (nl) —0(nl —nl,) +p—q—7(q),q1,E)
+u(nl—Tm)—0ml —nl,)+p—q—71(¢),l,q, FE). (79)

L(l,q,n, E,0, p) measures a shift in the first-order condition for labor supply when one of the variables [, ¢, n, E, 0
or p changes. @ is introduced to capture an exogenous increase in the marginal tax rate (i.e., for any level of
earnings). p is introduced to retrieve the income effect when the household receives an exogenous amount of
income p, irrespective of the amount of labor supplied. The first-order condition for labor supply of the household
n is thus equivalent to L (I, q,n,0,0) = 0. Introducing the term 6 (nl — nl,) has the following intuition. Suppose
that we raise the marginal tax rate — irrespective of income level nl — and we evaluate the impact at nl, (the
optimum choice for ,, of household n), then this marginal tax increase does not change income, only the marginal
incentives to supply labor. p represents the income effect: suppose that we give the household a marginal increase
in income of p, starting from p = 0, what will happen to labor supply?
We find the following partial derivatives, using the first-order condition —u; =n (1 —T") u,:

2 1"
Uy Uy T
Li(1,q,E,n,0,0) = L) e — 2L, R 80
l(,qa , 1, U, ) ull+<uC> U ’U,Cuz—i_nU/l].*T/ ( )
Uy u u
Lq (l»(L E7n707 0) = u7c (UCCUZ - ch) + ulq - ulcia (81)
up T uy 2 uy l
Ln (laQa E,’I’L,O, 0) = <_l + nulﬁ + <Uc> Uee — ’LTC Ulc gv (82)
Li (g, B,n,0,0) = wp — e, (83)
LO (la q, E7 n, 07 0) = —NUc, (84)
L,(,q,E,n,0,0) =n(1—T")uc+ we=ue— %ucc. (85)

C

Now, by applying the implicit function theorem we derive that

al L,
%__E7 x_q7n797p' (86)

We thus obtain the uncompensated elasticity of labor supply w.r.t. commodity demand g:

Uy Uqg Ug
ol L ue (“* - “cq) Tt lg ~ Uiey,
=4 el _9_© ! S (87)

oql Ll 2 "
q ! uy + (Z—i) Uge — QZ—iucl + nul%

The uncompensated wage elasticity of labor supply €}:, is equal to:

2 11
al n L,n w/l+ (%) Uje — (%) Uce — MU o7

el =~ = = . : (88)
on 'l Ll uy + (%) Uge — 2 (z—i) Ul + nul%
Note further that the uncompensated wage elasticity of earnings supply €., is equal to:
9 uy/l+uy — (uf) (o
5gnzaiﬁ=1+am: . e . (89)
n z uy + (Z—i) Uee — 2 (:ﬁ—i) Uel + nul%
The income elasticity of labor supply &/ is defined as:
— Ul Uy
ol L e (?“ce - “lc)
I / / 14 c c
g=1-T)n—=—-1-T)n-—+ = . 90
=0-T)ng =—(1-T)n" (90)

2
u u T
uy + (ﬁ) Uee — 2 (172) Ul + NU T

The compensated wage elasticity of labor supply e, is defined residually by the Slutsky equation (g, =

et — <f): )
ol* w1 — nuy 1

= oo = / LT . (91)

onl w 2 u T
uy + (f) Uee — 2 (#) Uel — MU T—77




Next, the compensated taz elasticity of labor supply &;7 is:

o (1-T') _ Ly(1-T") _ /! . (92)

2
u u T
uy + (,7’) Uee — 23 Uy + MU 777

=90 1 T L

The compensated taz elasticity of earnings supply .7 equals the compensated tax elasticity of labor supply
(since the wage rate n is not affected by an increase in marginal taxes, only labor supply):

0z (1-T' /1
Ex1r = _%7( > ) =& = 2 t/ : (93)
uy + (%) Uee — 2 (#) R
Finally, we obtain the uncompensated labor-supply elasticity with respect to environmental quality E:
O E LpE (ﬂuE - UIE) E/l
EIE —_ZEZ_ ¢ . (94)

SOE1 . L1 2 .,
l g + (%) uCC—QZ—iud—i—nul%

3.1.2 Elasticities of commodity demands

We add price p for polluting good ¢ to retrieve the income effect in demand for polluting goods in a clear and
transparant way. Later we will normalize the price p back to one. The household budget constraint is then given
by:

Cn + Pgn + T(pqn) = Zn — T(Zn)a vn. (95)

Maximizing utility w(cp, gn, 2n/n, E) subject to the household budget constraint yields the following necessary

first-order conditions: u "
L (1=T'(z))n, -2 =p(1+7(pgn)), Vn. (96)

Uc Uc

Follow the same procedure as above. Hence, we can define the following shift function @ for the demand of the
poluting commodity while suppressing the indices n:

Q,q,n,E,p,0,p) =p (147" (pq) + 0) uc (nl — T (nl) — pg — 7(pq) — 0 (pq — pan) + p,1,q, E)
— g (nl — T (nl) — pg — 7(pg) — 0 (pqg — pgn) + p,1,¢, E) . (97)

Q(l,q,n, E,p,0,p) measures a shift in the first-order condition for polluting goods demand when one of the
variables [, ¢, n, p, 0 or p changes, while labor supply remains . 8 and p have the same role as in the shift-function
for labor. 6 is introduced to capture an exogenous increase in the marginal tax rate on the polluting commodity
(i.e. for any level of commodity demand). p is introduced to retrieve the income effect when the household
receives an exogenous amount of income p, irrespective of polluting goods demand. The first-order condition for
pollution goods demand ¢ of the household n is thus equivalent to @ (I, ¢,n, E,p,0,0) = 0.

We find the following partial derivatives, using the first-order condition u, = u.p(1 + 7/ (pgn)):

—u; (U U
Ql (lvqa naEapa an) = uw l (uqucc - uqc) + ;qucl — Ugl, (98)
ug \ 2 U T
q q
Qq(,q,n,E,p,0,0) = —ugq — <Uc) Uee + 2 (Uc) Ueq + mpuq, (99)
U uy 1
Qn (lvqa n7Eapa 070) = - ('LLZUCC - qu) ;Cﬁa (100)
U
QE (l7qa n7Eapa 070) = ;qucE — UqE, (101)
U ug\ 2 U T q
Qp (Z7Qa nyEapa 070) = ?q - <UZ> Uce + uqci + mpuq 5’ (102)
Q@ (17Q7n7E7p7070) = PUc, (103)
UgUee
Qp (l,q,n,E,p,0,0) :p(1+7—/)ucc_uqc = {; — Uge- (104)
Now, by applying the implicit function theorem we find:
0 =
87.3‘:_%7 x:l7naEvp797p' (105)
q



Hence, from this we can calculate the elasticities. From here on, we assume again that p = 1 everywhere.
The uncompensated elasticity of commodity demands with respect to labor supply is given by:

L9l il 1 (*ZZ Uce — Uqc) + 2t — ugl
e S £ Y - (106)
“ 7 0lg Qeq q ug )2 ug o

Ugq + (rq) Uce — 2 (#) Ucqg — Tr77Ug

The uncompensated elasticity of commodity demands with respect to the wage rate is:

—up [ Yq
W _Ogn _ Qun 1 Tt (e — )
EW:@TLE:_CTEZQ — - — (107)
q Ugq + (?Z) Uee — 2 (U—Z) Ueqg — 717-5-7' Uq
The uncompensated price elasticity of commodity demand ¢4, is equal to:
Uq Uq 2 Uq T
u o 8qp p Qp 7 o (Tp) Uee + uqcui,_, + 1+7/ Uq
gqp:_afpazgaz_ ~ 3 - — (108)
a Ugqg + (IZ) Uee — 2 (i) Ueq — 174—-T/ Uq
The income elasticity of commodity demand eé is defined as:
I / aq / QP % (%ucc B Uqc)
6q5(1+7)p8fp:*(1+7)p—* (109)

= 5 .
Qq Ugq _ Uq _ T
Ugq + (uc ) Uee — 2 (uc ) Ucq — To77Uq

Hence, using the Slutsky equation (e}, = sqp—sé) the compe=nsated price elasticity of demand for commodity
q is determined residually:

oq* Ug/q + Trmpu
Eqp aiﬂ - . o/ 1F TP . (110)
Pa (%) U—Q(%) Ueq — Tt
The compensated tax elasticity of commodity demand €4,/ is equal to:
aq* (1 ! 1 d
EqT’E_aiqe( +T):( +T)%:_ 5 uq/q ) (111)
q q q Ugq + (%) Uge — 2 (Z—j) Ueqg — %uq

And, the uncompensated elasticity of demand of polluting goods with respect to environmental quality is:

« _04E _ QpE _ (s2uee — uae) B/a (112)
ET9Eq T Qi uy \? ug o
Ugq + (uf) Uce — 2 (f) Ucq — T177PUq

Uc

3.1.3 Elasticities of conditional commodity demands

Finally, we evaluate the first-order condition for ¢ and ¢ for a given level of net income § = z — T'(Z). First, the
shift function for commodity demands is now modified to:

Q (17Q7p7n7070|g) = p(l + ol (pq)) Uc (2 - T(E) - (pq + T(pQ)) 7l7q7E) — Uq (2 - T(E) - (pq + T(pq))ﬂ17Q7E) .

(113)
Therefore, we can derive:
_ Ug 2 Ug T

Qq (l, q,n, E,p,0, Oly) = —Ugq — (W) Uee + 2 (Uc) Ueqg + mpuqa (114)
u

Ql (la q,n, E>p7 07 0|g) = p(l + 7J)ucl — Uql = ;qucl — Ugql, (115)
c

l l U l
QTL (la q,n, E7p7 0? O|ﬂ) = _p(l + T/)UCZE + uqlﬁ = - <qucl - Uql) E (116)
Uu
QE (Z7Qan7E7paO7O) = JUCE — UqE, (117)

(&
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where we obtained the derivative @,, by substituting I = z/nin the modified shift function. Hence, by applying
the envelope theorem we find (assuming p = 1 throughout):
(%jucz - uqz) l/q

ogl| Qi

gu’iz ‘ o _ (118)
“ 2 v
1T gl Qeal, uqﬁ(%) uccfz(z—j)ucq—#uq
u
u dgn|  Qun| (ﬁ“cl_qu) Ya _
“inls = Ful, =" Qral, = ; L A
Uq _
o Z00E[ _QsE| (ituer —nae) B/ (120)
Els = 35 = = - — 2 " '
PTO0Eql, Qualy o, (5) e — 2 () weq —

. Second, the uncompensated and compensated elasticities

We note two things here. First, we find £ — sgn|y

of the conditional commodity demands are the same, see ? for the formal proof.

3.2 Proof Proposition 4

Proposition 4 The optimal non-linear marginal income tax schedule is given by the ABC-formula:

CT'z) 1 [T =) fGe)dan 1 - F(z,) Ven A 2z (121)
= = ~ ] n ny ~“ny
1—=T"(zn) e 1—F(z,) Znf(2n) B
=A, =B, =Chn

The marginal cost of public funds equals one at the optimal tax system:

n

MCF = o B o 1
Sy W' An + ntngginy + (07 — o) 5tigy £ (n)dn

=1. (122)

The optimal non-linear marginal pollution tax is given by:

' (qn) — £ T €lqlg
<()n> Eqr’ = (Zn> e q‘y VZn (123)

1+ 7 (gn) C1-T(z) ey,
Optimal provision of environmental quality satisfies:
N[ YA, fn)dn =L, (124)
N Uc n

where
T (zn) e Oln(ug/uc)

1-T"(z,) €%, Olnl,

A, = (125)

The proof proceeds in a number of steps. First, we set up the maximization problem and derive the first-
order conditions. Second, we will manipulate each first-order condition using the elasticities derived in Lemma
1. Third, we collect all rewritten first-order conditions to establish the various parts of the Proposition.

3.2.1 First-order conditions

We can invert the utility function to write ¢, as a function ¢(gy, l,, un, E) of the allocation:

ocy, U Ocy, —uy Ocy, 1 dcy, ug

n — TL?l’n,7 naEa 7:747 a7 = y a. = A 126
¢ cla u ) qn Ue ol,, U ou, U oF U (126)

where the derivatives are found using the implicit function theorem.

The government thus solves the following maximization problem:
max N U (uy)dF(n), 127
o N [ varem) (121)
s.t. N/ (nly, — c(gn, ln, Un, E) — qn) dF(n) = R, (128)

N
E E
dﬂ _ _lnul(C(Qnaln,una )aQnalna ) (129)
dn n

11



After integrating the incentive-compatibility constraint (129) by parts, the Lagrangian for maximizing social
welfare can be formulated as

R
max L= U(u,) + nly — c(Gn, ln, Un, E) — gn — — n)dn 130
{ln+qn,un,E} /./\/ ( ( ) ! < (q ) I N)) f( ) ( )
E—-E,
— F
u( I +oz/Nqnd (n)>
F FE
+/ (gnlnul(c(Q’n7ln7un7 )aq'rulna ) _uﬂ(:hon) dn—i—@WUW— gnun7
N n dn - =

where 6,, is the Lagrangian multiplier associated with the differential equation for utility (129). 7 is the Lagrangian
multiplier on the economy’s resource constraint and p is the multiplier on the environmental technology. The
first-order conditions with respect to I, ¢., u,, and E are given by:

% = -7 <1 + g;:) fn) — paf(n) + 07;1” <UICZZ: + ulq> =0, Vn, (132)
R L F e Y (133)
guﬁn = —0, =0, g—fﬁ =6 =0, (134)
% =/, K—]‘\‘[ - 77(23;) f(n) + 9’;1” (qu + ulcgcgﬂ dn = 0. (135)

These first-order conditions are rewritten in an number of steps.

3.2.2 Rewriting the first-order condition for [,

By substituting d¢,, /0L, = —u;/u. = (1 —T")n from (126), the first-order condition for I,, (131) can be written

as:
T/(Zn) ucen/n lnull lnulc
= 1 — . 136
TG afm 150

Next, use the defintions for the elasticities ¢}, , ei7v, €%, and e.p+ from (88), (92), (89) and (93) to derive that

zZn
the elasticity term in (136) equals:

lnull lnulc . 1 +€?n 51an

1+ - = =, (137)

[ Ue e’ €21

Using (137) in (136) then gives the following formula for the income tax:
T (zn) o ucln/n (1+¢p) B uctn/n €Y, (138)

1—T"(2n) ~onf (n) e - onf (n) ez’

3.2.3 Rewriting the first-order condition for ¢,

By substituting dc¢,,/0¢, = —uq/uc. = — (1 + 7'(¢,,)) from (126), the first-order condition for g, can be rewritten
as:

ol qn) — on 0 l
( )/ n_ Ue n/nﬁ (Uqulc _ulq) _ (139)
T (@)~ nf(n) ug \.
Next, combine the defintions for £q|; from (118) and e4 from (111) to find:
I, Eqt|
n <“qud _ uql> ) (140)
Ug \ Ue Eqr!

Hence, substituting (140) in (139) gives the following expression for the pollution tax rate:

7' (qn) — % Uebn /1 Cal 7
=— . (141)
14+ 7(gn) nf(n) eqr
Use (138) in (141) to find the optimal non-linear pollution tax in the Proposition:
’ _ap er ’
L Eqrt = — T/(Zn) e la 17. (142)
1+7(qn) ) 1=T'(zn) = ety

12



3.2.4 Solution for u.60,/n

We will solve for w0, /n, which enters the optimal income tax on the right-hand side of (138). First, rewrite the
first-order condition for the level of utility w, (133) using dc¢, /Ou, = 1/u, from (126) to find:

uc dfy, U, Uebn /1) Lnue
= -1 _ 14
net = (T 1) £ ¢ L (143

We define a composite multiplier ©,,, and substitute I,, = 2z, /n:

UC(Cn, CIm lnu E>9n _ Uc(CQO Zn/nu E>9n
n n

On

(144)

©,, has total derivative:

de, db,u. O,uql, 60, dec, Opugdz, 60, dg, 0, dFE
- e _m P 2 B TR T e — e+ R — 145
dn dn n n n nuccdn+nndn+nuchn+nu6Edn (145)

Note that ‘(iiE = ( since environmental quality is the same for everyone.

Totally differentiate the household budget constraint (77) and use the first-order conditons (78) to find:

de, , dz, dgn  —wdz,  ugdg,
dn = (=T ), dn 0, dn ~ nue. dn ue dn’ (146)
Therefore, substitution of (146) in (145) yields:
de, dd, u. O uclln On Uecty \ dzp On UccUq dgn
= —— - — — | ue — —+ — —Ueg | —. 147
dn dn n n n + nmn el U dn + U Yea | qn (147)

Next, use the income elasticity of labor supply €/ in (90) and the tax elasticity of labor supply ;7 in (92) to

UccUl

find an expression for (ucl -

I
UlUee El —Uu
. - _ 148
tie Ug n(l—T") ley (148)

Similarly, use the income elasticity for commodity demands (109), the tax elasticity of commodity demands

ggr (111), and use 32 =1+ 7' to derive an expression for (5% — uey):
I
Uq &q Uq
2 e — Uy = ———9 T4 149
Ucu e (1 + T,)Qn Eqr’ ( )
Thus, substituting (148) and (149) into (147) results in:
a0, b, u. Oy ual, I —wbn/net, O &y Egn
71_7ul + €l /ﬂ /ngz’n_i q/uqq . (150)
dn dn 7 n n 1-TY n n gpr nml+71) “egr
Use the first-order condition for /,, (138) to derive:
T/ () (n) =~ Son (151)
" onony QT/'
And, use eg, g €| in the first-order condition for g, (141) to derive:
g
/ ap n/n Eqn
- — = —. 152
(7 = 2 1) = P22, 2 (152
Note that Eqn‘ = g4n, because the first-order condition for ¢, is evaluated for a given level of net income y,,

since the latter is pinned down by the first-order condition for Z,,.
Substitution of (151) and (152) in (150) gives:

de, df,u. 0, uql, 5{ , Eé , ap
——nle_ Tn R e (2K . 1
dn dn n n n + (1-17) fln)+ (147" T fn) (153)

And, substution of the income elasticities from (90) and (109) in (153) gives:

doe, db, u. 0 uclln , ol, , 8qn
— Gnlle nT _an 154
S = et - Bt () S )+ () - %) G2 ). (154)
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By combining (143) and (154) we can rewrite the first-order condition for u, as

din _ (qﬂ(l;n)“C +nT’(zn)%f(n) + <T’(qn) - O;”) %L; (n) - 1) f(n). (155)

Integrating (155), using a transversality condition from (134) yields the solution for ©,,:

el _ " -\ m)dm
0, =22 — [ (1= x5 fmdm, (156)
where
 _ U’ (U e / Ol / apl Oqm
Ar = ————+mT (Zm)ia(—T(O)) + (T (gm) — 77) 78(—T(0))' (157)

Note that the income effects of an increase in the intercept —7°(0) is the same as the income effect of an increase
in exogenous income p. Consequently, substituting (156) in (138) gives the optimal tax expression:

T'(z) 1 [7(1=\) f(m)dm (1 — F(n))et,
1-T'(z) e 1—F(n) nf(n) ’ (158)

Finally, use the trick by 7 to write the optimal tax formula in terms of earnings densities making use of the
fact that F(z,) = F(n) so that

f(zn)znegn = nf(n), (159)
T R ~
|~ F(n) = / F(n)dn = / Flon)dom = 1— Fzn). (160)
n Zn
Hence, using (159) and (160) in (158) yields the optimal income tax as in the Proposition:
T'(z) 1 [0 (0=X) fem)dzm (1 F(z,)) (161)
1-T'(z0) e 1— F(z,) Znflzn)
3.2.5 Marginal cost of public funds
Use the first transversality condition (134) to solve for ©,, = 0:
ucly [ )
0, = 2= [ (1=, fm)am =0, (162)
Hence, using the definition of A}, from (157), we find the marginal cost of funds as in the Proposition:
MCF = / o 5 ~ 1. (163)
3.2.6 Optimal provision of environmental quality
Use %C];: = —%2 in first-order condition (135) and rewrite:
cen l’ﬂ/ l'ﬂ c
N/ u [y g 4ebn/n (bt lntie )| g, - 2 (164)
N Ue nf(n) ug Ue 7
Define o l l
An = Uc n/n nUWE _ nUlc ) (165)
nf(n) ug Ue
Use the optimal income tax (138), and note that l"ﬂ% - l“uﬂ = %%ﬁ - %27“: = %El:u“) to find
T (z) ez (Oln(ug/uc)
A, = - 166
=T (2) €%, Olnl, (166)
Consequently, substituting (166) in (164) yields optimal environmental quality as in the Proposition:
N[ B+ A, f(n)dn =2 (167)
N Uc n
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