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A B S T R A C T

This paper extends the Mirrlees (1971) model of optimal non-linear income taxation with a monitoring
technology that allows the government to verify labor supply at a positive, but non-infinite cost. We analyze
the joint determination of the non-linear monitoring and tax schedules, and the conditions under which
these can be implemented. Monitoring of labor supply reduces the distortions created by income taxation
and raises optimal marginal tax rates, possibly above 100%. The optimal intensity of monitoring increases
with the marginal tax rate and the labor-supply elasticity. Our simulations demonstrate that monitoring
strongly alleviates the trade-off between equity and efficiency. Welfare gains of monitoring are around 2.8%
of total output. The optimal intensity of monitoring follows a U-shaped pattern, similar to that of optimal
marginal tax rates. Our paper can explain why large welfare states optimally rely on work-dependent tax
credits, active labor-market policies, benefit sanctions and work bonuses in welfare programs.

© 2016 Elsevier B.V. All rights reserved.

“Informational frictions are a specification of a particular type of
technology. For example, when we say “effort is hidden” , we are
really saying that it is infinitely costly for society to monitor effort.
The desired approach would be to devise optimal tax systems
for different specifications of the costs of monitoring different
activities and/or individual attributes. To be able to implement
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this approach, we need to. . . extend our modes of technical analy-
sis to allow for costs of monitoring other than zero or infinity.”

Kocherlakota (2006 pp. 295–296)

1. Introduction

Redistribution of income is one of the most important tasks of
modern welfare states. However, redistribution is expensive as it
distorts the incentives to supply labor. As a result, there is a trade-
off between equity and efficiency. On a fundamental level, Mirrlees
(1971) demonstrates that the trade-off between equity and efficiency
originates from an information problem. Earning ability and labor
hours are private information. Hence, the government cannot con-
dition redistributive taxes and transfers on earning ability, since the
government cannot distinguish individuals that are unable to work
from individuals that are unwilling to work. Therefore, redistribu-
tion from high-income to low-income earners inevitably distorts the
incentives to supply labor hours.

In practice, labor supply is not completely non-verifiable, as
assumed by Mirrlees (1971). Indeed, some welfare states do condi-
tion the tax burden on some measure of hours worked. For example,
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low-income individuals in the UK receive a tax credit if they work
more than 30 hours. This policy can be implemented only if the
government is able to verify hours worked. Similar restrictions
apply to in-work tax credits in Ireland and New Zealand (see also
OECD, 2011). Clearly, the assumption that hours worked and earn-
ing ability are not verifiable is a too strong assumption. In the real
world, the government does verify hours worked of individuals to
some extent, albeit at a cost. Consequently, the government can —
to some extent — separate shirking high-ability individuals from

hard-working low-ability individuals.
This paper extends Mirrlees (1971) by letting the government

operate a monitoring technology. The monitoring technology allows
the government to verify labor hours of an individual at a positive,
but finite cost. The government optimally sets the monitoring sched-
ule as a function of gross income. That is, the probability that an
individual is monitored depends (possibly non-linearly) on his/her
gross labor earnings. If an individual is monitored, the government
perfectly verifies his/her labor supply and can deduce the individ-
ual’s ability. By monitoring hours worked the government can thus
provide incentives to individuals to change their labor supply in
a direction that the government desires. In our model, individuals
receive a work bonus when they work a minimum number of hours.
This hours requirement is optimally determined by the government,
and corresponds to the type of work bonuses observed in the UK,
Ireland and New Zealand. Alternatively, we can formulate our model
such that monitored individuals receive a penalty when their hours
worked fall short of an optimally chosen minimum reference level,
which can be thought of as work requirements or conditional welfare
benefits that are observed in most advanced welfare states.

Each individual is aware of the monitoring and tax schedules
before making labor-supply decisions. Hence, individuals can alter
their monitoring probability by adjusting their hours worked. The
total wedge on labor supply consists of the explicit income tax rate
and an implicit subsidy on labor supply due to monitoring. Monitor-
ing of hours worked acts as an implicit subsidy on labor supply for
two reasons. First, the expected bonus increases (penalty decreases)
in the difference between hours worked and the reference level of
hours worked. Second, the monitoring intensity may decrease with
gross earnings, depending on the shape of the monitoring schedule.
For a given tax rate, monitoring can thus reduce the distortions of the
income tax on labor supply, thereby increasing equity, efficiency or
both.

In our model, the government maximizes social welfare by opti-
mally setting the non-linear monitoring intensity and the minimum
hours worked, alongside the optimal non-linear income tax.1 We
solve for the optimal non-linear tax and monitoring schedules by
decentralizing the optimal, incentive-compatible direct mechanism
that induces truthful revelation of ability types. We do not devi-
ate from Mirrlees (1971) in that individuals always truthfully report
earnings. We abstract from tax avoidance or evasion.2 The sched-
ule of optimal non-linear labor wedges is affected in two important
ways in comparison to Mirrlees (1971). First, the monitoring inten-
sity reduces the efficiency costs of the labor wedge, and allows for
higher marginal tax rates. Second, a decrease in labor supply directly

1 In our model, first-best can generally not be obtained, because the penalty func-
tion is exogenous. If the government would be able to optimize the penalty function
a trivial first-best outcome would result by either raising the penalty to infinity or
adjusting the penalty function such that the implicit subsidy on work exactly off-sets
the explicit tax on work.

2 We realize that the assumption of truthful reporting of earnings is not always real-
istic due to, for example, tax evasion and avoidance. This issue has been discussed in,
amongst others, Cremer and Gahvari (1996), Schroyen (1997) and Chander and Wilde
(1998). In most developed countries, however, firms are required to report gross labor
earnings directly to the tax authorities, which prevents underreporting of earnings for
a very large fraction of the population (see e.g., Kleven et al., 2011).

increases the penalties (or decreases work bonuses). Monitoring gen-
erates inequality between monitored and non-monitored individuals
at each ability level. Therefore, higher marginal taxes result in a
distributional loss due to monitoring activities. The net effect of
monitoring on the optimal wedge is thus theoretically ambiguous. In
Mirrlees (1971), tax rates at, or above, 100% can never be optimal. In
contrast, marginal tax rates could optimally be larger than 100% in
our model due to optimal monitoring. Even if the marginal income
tax rate is above 100%, individuals still supply labor as long as the
total wedge on labor remains below 100%. Monitoring could explain
why effective marginal tax rates of close to, or even higher than,
100% are observed in real-world tax-benefit systems in the phase-
out range of means-tested benefits. See Immervoll (2004), Spadaro
(2005), Brewer et al. (2010) and OECD (2011) for examples in OECD
countries.

The non-linear monitoring schedule is set so as to equate the
marginal cost of monitoring to the marginal efficiency gain associ-
ated with monitoring at each gross income level. The efficiency gain
of monitoring is increasing in the distortion created by the wedge
on labor. Therefore, the optimal monitoring intensity increases with
both the total labor wedge and the labor-supply elasticity. The opti-
mal minimum-hours requirement trades off the benefits of stronger
work incentives and the costs of larger within-ability group inequal-
ity. A higher minimum-hours requirement raises the incentive for
individuals to work more hours, which reduces income-tax distor-
tions. However, a minimum-hours requirement also raises inequality
between monitored and unmonitored individuals due to an increase
in the penalties for untruthfully reporting hours worked.

Unfortunately, there is no closed-form solution for the optimal
tax and monitoring schedules. Therefore, we resort to numerical sim-
ulations based on a realistic calibration of the model to US data.
Our simulations demonstrate that the optimal tax schedule follows
a U-shape, which closely resembles the simulations of Saez (2001).
Moreover, the monitoring schedule also follows a U-shape. This con-
firms that the monitoring intensity should indeed be large when tax
distortions on labor supply are large. The optimal minimum-hours
requirement is typically around 95% of total labor hours, which cor-
responds to 38 hours based on a working week of 40 hours. The
simulations demonstrate that the marginal tax rates with monitor-
ing are generally higher than without monitoring. Hence, monitoring
always results in more redistribution of income from high- to low-
ability individuals, despite larger within-ability group inequality that
results from monitoring and penalizing individuals.

Strikingly, our simulations demonstrate that the optimal tax rate
at the bottom end of the income scale is substantially above 100%.
This implies that the implicit subsidy on labor supply due to mon-
itoring is very effective in reducing the total tax wedge on labor
supply. Indeed, the optimal monitoring probability is close to one
at low-income levels, but it drops substantially towards middle-
income levels. There is a slight increase in the monitoring probability
towards the top, since tax rates increase. We conclude from our
simulations that monitoring is most important at the bottom of
the income distribution. Strongly redistributive governments should
therefore optimally employ a high monitoring intensity at the low
end of the income scale, for example, via job-search requirements,
benefit sanctions, work bonuses, and active labor-market programs.
Moreover, our findings suggest that work-dependent tax credits for
low-income earners, like those in the UK, Ireland and New Zealand,
are indeed part of an optimal redistributive tax policy.

The welfare gains of monitoring are shown to be large. Com-
pared to the optimal non-linear tax schedule without monitoring,
monitoring increases total output by 1.3% in our baseline simula-
tion. Moreover, the transfer increases by about 40%. The monetized
welfare gain of monitoring is about 2.8% of total output. The optimal
monitoring probability does not exceed 25% anywhere, except at the
lower end of the income distribution. In our baseline simulations,
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the cost of monitoring equals 0.8% of average labor earnings. Exten-
sive sensitivity analyses demonstrate that our results are robust to
parameter changes in the monitoring technology, on which little
empirical evidence exists.

The setup of the paper is the following. The next section gives a
brief overview of the related literature. The third section introduces
the model and derives the conditions for first- and second-order
incentive compatibility. The fourth section derives the optimality
conditions for monitoring and redistribution. The fifth section
presents the simulations. Finally, the sixth section concludes.

2. Review of the literature

Our model builds upon two strands in the mechanism-design
literature. Mirrlees (1971), Diamond (1998) and Saez (2001) develop
the theory of the optimal non-linear income tax under the
assumption that both hours worked and ability are completely
private information, implicitly assuming that verification of either
hours worked or ability is prohibitively costly. On the other hand,
the literature on costly state verification develops principal-agent
models where the outcome of a project is a function of both the
state of the world and the action of the agent (see, e.g., Mirrlees,
1999,1976; Holmstrom, 1979; Townsend, 1979). The outcome is
observed, but the action and the state of the world can only be veri-
fied through costly monitoring. Monitoring can improve the ex-ante
utility of both the principal and the agent. We apply the theory of
costly state verification to the Mirrlees (1971) model and show that
monitoring of labor supply can increase social welfare significantly.

In a related paper, Armenter and Mertens (2013) study the effect
of optimal monitoring of ability types on the optimal tax schedule.
They analyze a dynamic model of optimal taxation where the gov-
ernment can use a monitoring technology to establish the ability
of an agent. In their model, the monitoring intensity is exogenous,
while penalties are endogenous. In equilibrium, individuals do not
misreport their ability, and are therefore never penalized. Indeed, the
economy is shown to converge to first best in an infinite-horizon set-
ting. We, instead, analyze the case where monitoring is endogenous
and penalties are exogenously given. Because penalties are exoge-
nously given, individuals may misreport their ability type in equi-
librium. Consequently, our model does not converge to a first-best
outcome. An advantage of allowing for an endogenous monitoring
intensity is that we do not need to worry about a tax-riot equilibrium
in which all individuals misreport their type when they expect other
individuals to do the same (Bassetto and Phelan, 2008).

The effect of monitoring has also been studied in the litera-
ture on tax evasion and the literature on unemployment insurance.
The literature on tax evasion (see, e.g., Allingham and Sandmo,
1972; Sandmo, 1981; Mookherjee and Png, 1989; Slemrod, 1994;
Cremer and Gahvari, 1994,1996; Chander and Wilde, 1998; Slemrod
and Kopczuk, 2002) extends the Mirrlees (1971) framework by
allowing individuals to underreport their earned income to the
tax authorities.3 Compared to the standard Mirrlees (1971) model,
income taxation is more distortionary, because it not only reduces
labor supply, but it also increases tax evasion. However, the gov-
ernment can monitor individuals by auditing their tax returns and
fine them when they evade taxes. As a result, the equity-efficiency
trade-off improves.

Our paper is most closely related to Cremer and Gahvari (1996).
They develop a two-type economy with non-linear taxation and
monitoring. As in Mirrlees (1971), the government cannot verify

3 A comprehensive survey of the literature can be found in Slemrod and Yitzhaki
(2002).

ability and labor effort. In addition, the government can only ver-
ify labor earnings through monitoring. Hence, individuals make
two choices: how much labor to supply and how much of their
income to report to the tax authorities (tax evasion). Cremer and
Gahvari (1996) show that the government optimally levies a posi-
tive marginal tax rate on the lowest type, provided monitoring is not
prohibitively expensive, and monitoring and penalties are sufficient
to deter individuals from misreporting their income. Marginal tax
rates for the highest type are always zero. All individuals reporting
an income below a given threshold should be monitored with posi-
tive probability. Our model, in contrast, assumes that labor earnings
are perfectly verifiable and the individual makes only one choice:
the amount of income to earn (labor to supply), or, equivalently,
which type to report to the government. Since earnings are per-
fectly verifiable, individuals cannot evade taxes, as in Cremer and
Gahvari (1996). The monitoring instrument is aimed at measuring
hours worked instead of tax evasion.4 We contribute in a number
of ways to the analysis in Cremer and Gahvari (1996). First, in con-
trast to their two-type model, our model allows for a continuous
distribution of ability types, which allows us to derive the complete
non-linear tax and monitoring schedules for the entire population.
By considering optimal non-linear tax and monitoring under a con-
tinuum of skill types we derive an elasticity-based formula for the
optimal non-linear tax and monitoring schedule in the spirit of
Diamond (1998) and Saez (2001). Moreover, we provide the condi-
tions under which these schedules are implementable. Second, we
determine the shape of non-linear tax and monitoring schedules over
the entire income distribution through simulations. Third, in Cremer
and Gahvari (1996) prohibitively expensive monitoring would lead
to a laissez-faire outcome, since individuals would report no income
at all when there would not be any monitoring of earnings. In con-
trast, our model nests the standard Mirrlees (1971) model as a special
case when monitoring is prohibitively expensive.

In the literature on unemployment insurance, Ljungqvist and
Sargent (1995a,b) study the effect of monitoring on equilibrium
employment in welfare states.5 In their model, unemployed workers
may receive a job offer each period. In the absence of monitor-
ing, the benefits induce workers to decline an inefficiently large
number of job offers. Monitoring can raise efficiency by punishing
those workers that decline job offers. Simulations using Swedish
data demonstrate that welfare states with large benefits and pro-
gressive taxation can have low equilibrium unemployment rates,
provided that monitoring probabilities and sanctions are sufficiently
large. In a model of optimal income redistribution with search,
Boadway and Cuff (1999) determine the welfare-maximizing moni-
toring probability and demonstrate that it is increasing in the level
of the benefits. Boone and Van Ours (2006) and Boone et al. (2007)
develop a search model where the government can actively moni-
tor and sanction job-search effort. They show that monitoring and
sanctioning may be more effective in reducing unemployment than
cutting the replacement rate. In addition, they show that monitoring
may be effective, even when the duration of unemployment benefits
is limited. This literature has focused on monitoring the search effort
of unemployed workers. We contribute to this literature by studying
the effect of monitoring on employed workers.

Finally, we contribute to the literature on optimal non-linear
tax simulations (see, for example, Mirrlees, 1971; Tuomala, 1984;
Saez, 2001; Brewer et al., 2010; Zoutman et al., 2015). We show

4 An alternative interpretation would be that individuals exogenously supply labor,
but can use a costly evasion technology.

5 A large literature exists on optimal unemployment insurance. See Fredriksson and
Holmlund (2006) for a survey of this literature. However, this literature typically does
not consider monitoring of search effort.
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that monitoring can lead to significant improvements in both equity
and efficiency.6

3. Model

3.1. Households

The setup of our model closely follows Mirrlees (1971). Indi-
viduals are heterogeneous in their earning ability n, which denotes
the productivity per hour worked. Ability is distributed according
to cumulative distribution function F(n) with support [n, n], where
n could be infinite. The density function is denoted by f(n). Workers
are perfect substitutes in production and the wage rate per efficiency
unit of labor is constant and normalized to one. n corresponds to
the number of efficiency units of labor of each worker. Gross labor
income of an individual is the product of his/her ability and his/her
labor hours zn = nln. Individuals derive utility from consumption cn

and disutility from hours worked ln.
We introduce the model using a formulation where individuals

may receive a work bonus when they work a certain number of
hours. Then, we demonstrate that a tax implementation where indi-
viduals receive a penalty if they fail to meet this level of working
hours is equivalent. The critical part of our analysis is therefore the
monitoring of labor supply, not the particular tax implementation
through bonuses or penalties. To fix ideas, we assume that the tax
schedule consists of two parts. First, individuals pay income taxes
T̂(zn) based on their earned income zn. Second, individuals can apply
for a working tax credit, T , if their hours worked exceed a work
requirement, l∗, which the government optimally chooses. The work
requirement is the same for all individuals.7 This tax schedule cor-
responds closely to what we observe in the UK, New Zealand and
Ireland — see the remarks in the Introduction. Consequently, total
tax payments for individuals applying for the tax credit are given by
T(zn) ≡ T̂(zn) − T . Similarly, tax payments of the individuals who do
not apply for the tax credit are simply T̂(zn).

We make the technical assumption that all individuals apply for
the tax credit. This assumption is nearly without loss of generality
as we can always ensure that all individuals apply for the credit by
simultaneously adjusting tax payments without the tax credit T̂(zn),
and the tax credit T by similar amounts.8 Below we demonstrate that
such a policy is in the best interest of the government, since moni-
toring effectively alleviates the equity-efficiency trade-off and moves
the optimal second-best allocation closer to the first-best allocation.

Individuals can misreport their hours worked to the tax authori-
ties, and can claim the tax credit while not satisfying the minimum-
hours requirement. The government, however, can operate a mon-
itoring technology to verify actual hours worked of an individual
applying for the tax credit. p(zn) denotes the probability that an indi-
vidual with earnings zn is monitored by the government. p(zn) is also

6 Our paper is also relevant for the literature on minimum wages and optimal tax-
ation (see, for example, Boadway and Cuff, 2001; Lee and Saez, 2012; Gerritsen and
Jacobs, 2015). In Mirrlees (1971), wage rates per hour worked are assumed to be non-
verifiable, whereas wage rates need to be verifiable to implement and enforce the
minimum wage. This informational inconsistency can be avoided by costly monitor-
ing of wage rates so as to enforce the minimum wage. Combining optimal non-linear
taxes with optimal minimum wages and optimal monitoring is an interesting route
for further research.

7 Zoutman and Jacobs (2014) show that it is straightforward to extend the anal-
ysis with a non-linear work requirement that is dependent on ability. However, no
additional insights are gained and the analysis becomes more complex as incentive-
compatibility constraints will be affected by the work-requirement schedule as well.

8 To see this, suppose that the tax credit T and the tax schedule T̂ (zn) are given.
Next, add an arbitrarily large number to both. The incentive to apply for the tax credit
then increases, but it does not affect total tax payments T(zn). Consequently, there
always exists a level of the tax credit T beyond which everyone applies for it.

referred to as the monitoring intensity. We assume that the govern-
ment receives a perfect signal of the individual’s labor supply ln if the
individual is monitored.

Monitored individuals receive a penalty if they are found to mis-
represent their hours worked. The size of the penalty depends on
the difference between required working hours l∗ and actual hours ln
worked:

P ≡
{

P(l∗ − ln) if l∗ > ln
0 if l∗ ≤ ln

, P ( • ) , P′ ( • ) , P′′ ( • ) ≥ 0. (1)

We will refer to P( • ) as the penalty function. We restrict penal-
ties to be non-negative. The penalty function P( • ) is exogenously
given. We assume that the penalty function is differentiable once
over its entire domain, and differentiable twice everywhere, except
possibly at zero. Penalties and marginal penalties are both positive
and marginal penalties are increasing when individuals are found
to supply less labor than the hours requirement (P( • ), P′( • ), P′ ′( • ) ≥
0). Consequently, penalties decrease in hours worked. The govern-
ment optimally determines the reference level of working hours l∗.
By raising the the minimum-hours requirement l∗, the government
effectively raises the penalty when individuals are monitored. For a
given gross income level zn penalties thus increase in ability, since
higher ability individuals need to supply less hours in order to attain
a given gross income level. Finally, we assume that the government
does not penalize individuals that applied for the tax credit and sup-
plied the required minimum amount of hours. Fig. 1 displays an
example of a penalty function. As can be seen, the penalty decreases
quadratically in labor supply up to ln = l∗, after which it remains
constant at 0. Such a penalty function will be used in the simulations
later.

We believe that constraining the penalty function P( • ) is realistic
for two reasons.9 First, the legal system practically imposes limita-
tions on the government’s ability to use infinite penalties. Second,
we assume perfect monitoring as the labor supply of each individ-
ual is verified with perfect certainty. If we would more realistically
assume that monitoring is imperfect, hard-working individuals could
inadvertently be classified as shirking individuals. Then, we would
be able to endogenize both the penalty function and the monitoring
function, and infinite penalties would never be socially optimal (see
e.g., Stern, 1982 ; Diamond and Sheshinski, 1995; Jacquet, 2014). We
leave this extension for future research as it would severely com-
plicate our analysis without affecting the main result: monitoring
alleviates the equity-efficiency trade-off.

Rather than using work bonuses, the government could, equiv-
alently, use a negative tax credit T , i.e., a work penalty, for all
individuals not supplying the minimum level of labor. Individuals
would then be required to report to the government whether they
met the work requirement to avoid having to pay T , and the gov-
ernment then needs to verify whether these work reports are indeed
truthful. The total tax schedule T(zn) would remain the same. Hence,
the particular tax implementation with either work bonuses or non-
work penalties is immaterial to our main findings. In the remainder
of this paper we focus on determining the optimal total tax schedule
T(zn) including the tax credit.

The consumption of an individual who is not monitored is given
by cU

n ≡ zn − T(zn). The consumption of a monitored (and penalized
if hours worked are less than required for the credit) individual is

9 A more thorough discussion on these issues can be found in Schroyen (1997),
Mirrlees (1997), and Mirrlees (1999).
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Fig. 1. Example of a penalty function.

given by cP
n ≡ zn − T(zn) − P(l∗ − ln).10 Individuals are assumed

to maximize expected utility subject to their budget constraints in
monitored and unmonitored states. We follow Diamond (1998) by
assuming that all individuals have an identical quasi-linear expected
utility function:

u (zn, n) ≡ p(zn)cP
n + (1 − p(zn))cU

n − v(ln), v′( • ) > 0, v′′( • ) > 0,

= zn − T(zn) − p(zn)P(l∗ − zn/n) − v(zn/n), ∀n, (2)

where we substituted the household budget constraint and
ln = zn/n in the second line. An important analytical advantage of
this quasi-linear-in-consumption utility function is that individuals
are risk neutral.11 The first term in the first line represents the non-
monitoring probability times the consumption of an individual that
is not monitored. The second term in the first line is the monitoring
probability times the consumption of an individual that is monitored.
The last term in the first line is the disutility of labor supply.

Individuals choose the optimal amount of gross income based on
their productivity n, the tax function T( • ), the monitoring function
p( • ), and the penalty function P( • ). An income level zn is incen-
tive compatible if it maximizes u(zn, n). The first-order condition for
optimal labor supply is given by:

v′(zn/n) = (1 − T ′(zn) − p′(zn)P(l∗ − zn/n)) n+p(zn)P′(l∗ − zn/n), ∀n.

(3)

10 Monitored and unmonitored individuals thus face the same tax schedule, but the
tax function features a discontinuity, since the intercepts of the tax function for moni-
tored and unmonitored individuals are different. This is similar to Jacquet et al. (2013)
who analyze optimal taxes for employed and non-employed workers where intercept
of the tax function for the non-employed is different from that for the employed.
11 We could allow for risk-aversion in the utility function. In that case, we are

only able to solve for the optimal non-linear tax and monitoring schedules if the
social welfare function is utilitarian. Intuitively, the problem becomes analytically
untractable if the government has a different degree of risk-aversion — which is
implied by a non-utilitarian social welfare function — than households have. Without
risk aversion, this problem is always absent and we can allow for any degree of
inequality aversion in the social welfare function.

On the right-hand side, we see that policy drives a wedge between
the private and social benefits of labor supply. The total labor wedge
Wn is given by:

Wn ≡ n − v′(zn/n)
n

= T ′(zn)︸ ︷︷ ︸
explicit tax

+ p′(zn)P(l∗ − zn/n) − p(zn)
n

P′(l∗ − zn/n)︸ ︷︷ ︸
implicit tax

, ∀n. (4)

In a laissez-faire equilibrium, the right-hand side of Eq. (3) equals
n and the total labor wedge Wn is zero. The total labor wedge
consists of the explicit marginal tax on labor (T′) and the implicit
marginal tax (subsidy) on labor due to monitoring (p′P − pP′/n). If
T′ + p′P − pP′/n > 0, the redistributive tax and monitoring policy
reduces optimal labor supply below the laissez-faire level, and vice
versa if it is smaller than zero. The wedge is naturally increasing in
the explicit marginal rate T′. Furthermore, it increases in the marginal
monitoring probability, p′, if penalties are positive, i.e., P > 0. p′ gives
the marginal increase in the monitoring probability as a function of
gross earnings. If the monitoring probability increases (decreases)
with income, this reduces (increases) the incentive to supply labor,
because a higher labor income increases (decreases) the probabil-
ity of receiving a penalty. Therefore, an increase in the marginal
monitoring probability decreases the incentive to supply labor.

Proposition 1 shows that without loss of generality we can
assume that expected consumption, C(zn) ≡ zn − T(zn) −
p(zn)P(l∗ − zn/n), is non-decreasing in earnings zn. Consequently,
the total labor wedge Wn can never be larger than one, i.e., larger
than 100%.

Proposition 1. All implementable continuous allocations can be imple-
mented through a continuous non-decreasing expected consumption
function C(zn) , ∀n. If C(zn) is continuous and differentiable, the wedge
Wn can never exceed 1.

Proof. The proof directly follows Mirrlees (1971). Let C̃ (z) be any
continuous expected consumption function. The individual maxi-
mization problem is given by:

zn = arg max
zn

C̃(zn) − v(zn/n), ∀n. (5)
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Now, consider the function C(zn) = maxz̃n≤zn C̃(z̃n). Clearly, C( • )
is non-decreasing and continuous, because C̃( • ) is continuous. Next,
consider the maximization problem:

max
zn

C(zn) − v(zn/n) = max
zn

[
max
z̃n≤zn

C̃(z̃n)
]

− v(zn/n), ∀n. (6)

Assume zn is the solution to Problem (5). The solution to this
second maximization problem must also be zn. To see this, evaluate
C( • ) at zn: C(zn) = maxz̃n≤zn C̃(z̃n). Either C(zn) = C̃(zn) or C(zn) =
C(zn) with zn < zn. In the first case, maximization Problems (6) and
(5) are equivalent, and hence, they must have the same solution. In
the second case, because v′( • ) is strictly increasing in zn, zn must
give a higher value to the objective function in Eq. (5) than does zn.
Hence, we arrive at a contradiction, because zn could not have been
the solution to Problem (5) in the first place. Therefore, without loss
of generality we can focus on non-decreasing functions C( • ). Now,
suppose C( • ) is differentiable and consider its derivative:

C′(zn) = 1−T ′(zn)−p′(zn)P(l∗−zn/n)+
p(zn)

n
P′(l∗−zn/n) = 1−Wn, ∀n.

(7)

C(zn) is non-decreasing if its derivative is greater than or equal to
zero: C′(zn) ≥ 0 ⇐⇒ Wn ≤ 1. �

Proposition 1 has an intuitive interpretation. Suppose an indi-
vidual has a budget constraint such that expected consumption is
decreasing in gross income over some interval. Then, this individ-
ual will never choose gross income in this interval, because he/she
can work less and consume more, both yielding higher utility. Conse-
quently, the government can never increase social welfare by setting
the wedge Wn above 1. The explicit marginal tax rate T′(zn), however,
could be above 1, provided that monitoring implies a sufficiently
large implicit marginal subsidy on work, i.e. p′P − pP′/n < 0, such
that the overall wedge remains below 1. This is the case if the
expected penalty increases sufficiently fast in the difference between
expected and required labor supply such that pP′/n >p′P. Therefore,
monitoring can improve the incentives to supply labor.

3.2. Government

The government designs an optimal income tax system, mon-
itoring schedule and work requirement so as to maximize social
welfare, subject to resource and incentive constraints. The govern-
ment’s objective function is an expected concave sum of individual
utilities:

∫ n

n
(1 − p(zn))G(uU

n ) + p(zn)G(uP
n)dF(n), G′( • ) > 0, G′′( • ) < 0, (8)

where G( • ) is the social welfare function. uU
n ≡ cn − v(zn/n) and

uP
n ≡ uU

n − P(l∗ − zn/n) denote the utility levels of the unpenalized
and penalized individuals, respectively. Our specification for social
welfare treats all sources of inequality the same. In particular,
the government is averse to inequality generated by differences in
earning ability, and the government is averse to income inequality

among individuals of the same earning ability caused by penalties.12

Due to quasi-linearity of private utility there is no social desire to
redistribute income if the social welfare function is utilitarian.

The government is constrained in its ability to redistribute
income, because the ability of individuals is private information.
However, the government can infer the ability of an individual from
costly monitoring activities or it can induce self-selection by sac-
rificing on redistribution. The total cost of monitoring is given by:

∫ n

n
k(p(zn))dF(n), k(0) = 0, k′( • ), k′′( • ) > 0. (9)

The cost of monitoring is increasing and convex in the monitor-
ing probability p. Since there is a perfect mapping between ability
n and labor earnings zn, we can also write p( • ) as a function of the
ability level n, where we use the short-hand notation p(zn) = pn.
However, p′(zn) ≡ dpn

dzn
always denotes the derivative of monitoring

with respect to gross earnings. We assume that monitoring is suffi-
ciently costly so that the government will not choose to monitor all
individuals, i.e., pn < 1 for all n. Hence, the government will rely on
both self-selection and monitoring to obtain information on earning
ability.

The economy’s resource constraint implies that total labor
earnings equal aggregate consumption plus monitoring costs:

∫ n

n
zndF(n) =

∫ n

n

(
(1 − p(zn))cU

n + p(zn)cP
n + k(p(zn))

)
dF(n). (10)

By defining unpenalized consumption as cn ≡ cU
n = cP

n + P(zn, n), we
can write for aggregate consumption:

∫ n

n

(
(1 − p(zn))cU

n + p(zn)cP
n

)
dF(n) =

∫ n

n
(cn−p(zn)P(l∗−zn/n))dF(n).

(11)

Hence, using Eq. (11) the economy’s resource constraint (Eq. (10))
can be rewritten as:

∫ n

n
(zn + p(zn)P(l∗ − zn/n))dF(n) =

∫ n

n
(cn + k(p(zn))) dF(n). (12)

We do not need to consider the government budget constraint,
since it is automatically satisfied by Walras’ law if the individ-
ual budget constraints and the economy’s resource constraint are
satisfied.

12 Our specification for social welfare is conceptually closest to the case where
individuals would be risk averse and the government would be utilitarian. However,
for analytical and numerical tractability we had to assume risk-neutrality of individu-
als. If, in contrast, we would let the government maximize a concave transformation
of ex ante expected individual utilities, i.e., G((1 − p(zn))uU

n + p(zn)uP
n), with G′( • ) > 0,

and G′ ′( • ) < 0, the government would no longer value any inequality within
ability groups caused by monitoring, only inequality generated by differences in ability
levels. We deem this an undesirable property for our analysis.
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In line with Mirrlees (1971), we assume that the government
fully commits to the tax and monitoring schedules before individuals
make their decisions.13 The timing of the model is as follows:

1. The government announces the exogenously given penalty
function P(l∗ − ln), the optimal non-linear income tax T(zn), the
optimal non-linear monitoring schedule p(zn), and the optimal
work requirement l∗.

2. Each individual n optimally chooses hours worked ln.
3. The government observes the labor incomes zn chosen by

each individual n, and taxes income and monitors individ-
uals accordingly. The government penalizes all monitored
individuals according to the penalty function.

4. Individuals receive utility from consumption and leisure.

By the revelation principle, any indirect mechanism can be repli-
cated with an incentive-compatible direct mechanism (Myerson,
1979; Harris and Townsend, 1981). Therefore, we can find the
optimal second-best allocation by maximizing welfare subject to
feasibility and incentive-compatibility constraints. We can decen-
tralize the optimal second-best allocation as a competitive market
outcome through the non-linear tax and monitoring schedules.

3.3. First-order incentive compatibility

By using the envelope theorem we can derive a differential
equation for the utility function un which is a necessary condition
for incentive compatibility. The next subsection derives the condi-
tions under which the first-order condition is also sufficient. The
incentive–compatibility constraint is found by totally differentiating
Eq. (2) with respect to n:

dun

dn
=

∂u(zn, n)

∂n
+

∂u(zn, n)

∂zn

dzn

dn
=

ln
n

(v′(ln) − p(zn)P′(l∗ − ln)), ∀n,

(13)

where ∂u(zn ,n)
∂zn

= 0 due to the individual’s first-order condition
in Eq. (3). Thus, if the optimal allocation satisfies Eq. (13),
individuals’ first-order conditions for utility maximization are also
satisfied.

3.4. Second-order incentive compatibility

Without further restrictions we cannot be certain that the opti-
mal allocation derived under the first-order incentive–compatibility
constraint (Eq. (13)) is also implementable. An implementable allo-
cation should satisfy additional requirements to ensure that the
first-order approach also respects the second-order conditions for
utility maximization. The next Lemma summarizes the requirements
for second-order incentive compatibility.

13 Roberts (1984) shows that a time-consistency problem may emerge in Mirrlees
(1971) when the government cannot credibly commit to its announced income-tax
schedule. If all types truthfully reveal their ability, the government wants to renege on
its announced income-tax schedule and levy individualized lump-sum taxes based on
ability instead. However, rational individuals anticipating that the government will do
this will not reveal any information in the first place. Hence, the optimal redistribution
problem degenerates.

Lemma 1. Second-order conditions for utility maximization are satis-
fied under the first-order approach if the following conditions hold at the
optimal allocation for all n:

i) Single-crossing conditions on the utility and penalty functions are
satisfied:

∂ (v′(ln) /n)

∂n
− p(zn)P′(l∗ − ln)

n2
(eP

n − 1) +
lnp′(zn)

n
P′(l∗ − ln) ≤ 0,

(14)

where eP
n ≡ P′′(l∗−ln)ln

P′(l∗−ln) is the elasticity of the penalty function,
ii) zn is non-decreasing in ability:

dzn

dn
≥ 0. (15)

Proof. The second-order condition for the utility-maximization
problem (Eq. (2)) is given by:

∂2u(zn, n)

∂z2
n

≤ 0, ∀n. (16)

This second-order condition can be rewritten in a number of steps.
Totally differentiating the first-order condition (Eq. (3)) gives:

∂2u(zn, n)

∂z2
n

dzn

dn
+

∂2u(zn, n)

∂zn∂n
= 0, ∀n. (17)

Substitution of this result in Eq. (16) implies that the second-order
condition is equivalent to:

∂2u(zn, n)

∂zn∂n

(
dzn

dn

)−1

≥ 0, ∀n. (18)

Differentiating the first-order condition (Eq. (3)) with respect to n
and substituting the result yields:

(
∂(v′/n)

∂n
+

pP′

n2

(
1 − P′′ln

P′

)
+

lnp′

n
P′

) (
dzn

dn

)−1

≤ 0, ∀n. (19)

The inequality holds if all conditions of the Lemma are satisfied. �

The single-crossing condition and the monotonicity of gross earn-
ings are well-known from the Mirrlees model (Mirrlees, 1971; Ebert,
1992). The single-crossing condition ensures that — at the same
income-consumption bundle — individuals with a higher ability have
a larger marginal willingness to work. In our model, the single-
crossing condition contains three elements. The first is the standard
Spence–Mirrlees condition on the utility function, i.e., ∂(v′(ln)/n)

∂n < 0.
If this term is negative, the marginal disutility of work for individuals
with a higher ability level is lower. Most utility functions considered
in the literature exhibit this property, including the utility function
we adopt in our simulations. The sign of the second term is deter-
mined by pP′(eP

n − 1)/n2. Intuitively, it is more costly for high-ability
individual to mimic a low-ability individual if ∂(P′/n)

∂n > 0. That is,
the marginal penalty of earning a lower income increases with abil-
ity. ∂(P′/n)

∂n > 0 is equivalent to eP
n > 1. Intuitively, if the elasticity of

the marginal penalty is larger, penalties become increasingly more
severe for high-ability individuals mimicking low-ability individu-
als. The third term, lnp′P′/n, concerns the slope of the monitoring
schedule, which determines its sign, since P′ > 0. If the marginal
monitoring probability decreases in gross earnings (p′ < 0) individ-
uals will work harder in order to decrease the probability of being
monitored and penalized. The sign of the last term is determined by
the endogenous monitoring schedule. Hence, high-ability individuals
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can be induced to self-select into higher income-consumption bun-
dles, unless the monitoring probability increases too fast with ability.

A second requirement to induce self-selection is that gross earn-
ings are indeed increasing with ability at the optimal schedule.
Consequently, a tax schedule that provides higher income to higher
ability individuals induces self-selection of higher ability types into
higher income-consumption bundles. In the remainder we assume
that all the conditions derived in Lemma 1 hold at the optimal allo-
cation. In our simulations, we check the second-order sufficiency
conditions ex-post and we always confirm that they are respected.14

4. Optimal second-best allocation

The optimization problem with monitoring can be specified
formally as follows:

max
∫ n

n
[(1 − pn) G(un + pnP(l∗ − zn/n))

+ pn G(un − (1 − pn)P(l∗ − zn/n))] f (n)dn, (20)

s.t.
∫ n

n
[zn + pnP(l∗ − zn/n) − cn − k(pn)] f (n)dn = 0, (21)

dun

dn
=

ln
n

(v′ (ln) − pnP′(l∗ − zn/n)), ∀n, (22)

un = cn − pnP(l∗ − zn/n) − v(zn/n), ∀n, (23)

pn ≥ 0, ∀n, (24)

where utility of unpenalized and penalized individuals is, respec-
tively, written as uU

n = un + pnP(l∗ − zn/n) and uP
n = un −

(1 − pn) P(l∗ − zn/n). The final constraint assumes that the probabil-
ity of monitoring cannot be smaller than zero. We assume that the
cost of monitoring is sufficiently large to ensure that the constraint
pn ≤ 1 is never binding.

We formulate a Lagrangian for this optimization problem, where
k is the multiplier of the economy’s resource constraint (Eq. (21)),
hn denotes the multiplier on the incentive compatibility constraint
(Eq. (22)), ln is the multiplier for the definition of utility (Eq. (23)),
and gn is the Kuhn–Tucker multiplier of the non-negativity con-
straint on pn (Eq. (24)). After integrating hn

dun
dn by parts, we can write

the Lagrangian function for this problem as:

L ≡
∫ n

n
[(1 − pn) G(un + pnP(l∗ − zn/n))

+ pnG(un − (1 − pn) P(l∗ − zn/n))] f (n)dn

+ k

∫ n

n
[zn + pnP(l∗ − zn/n) − cn − k(pn)] f (n)dn

−
∫ n

n

hnzn

n2 [v′(zn/n) − pnP′(l∗ − zn/n)] dn + hnun − hnun

−
∫ n

n

dhn

dn
undn +

∫ n

n
ln [un − cn + v(zn/n) + pnP(l∗ − zn/n)] dn

+ gnpndn, (25)

where cn, zn, pn, un and l∗ are the control variables.

14 If the Spence–Mirrlees or monotonicity conditions are violated, then bunching
generally occurs, possibly also at zero earnings (see also Ebert, 1992). Bunching at
zero labor income due to income effects cannot occur, since we assumed quasi-linear
utility (see also Seade, 1977). In all our simulations we allow for an atom of individuals
with zero earning ability that are bunched at zero labor earnings so as to avoid
counterfactual zero optimal marginal tax rates at the bottom.

The necessary first-order conditions are given by:

∂L
∂cn

= 0 : −kf (n) − ln = 0, ∀n, (26)

∂L
∂zn

= 0 :
[
(1−pn)pn

P′( • )
n

(G′(uP
n)−G′(uU

n ))+k

(
1− pnP′( • )

n

)]
f (n)

− hn

(
v′( • ) + znv′′( • )/n − pn (P′( • ) − znP′′ ( • ) /n)

n2

)

+ ln

(
v′( • ) − pnP′( • )

n

)
= 0, ∀n, (27)

∂L
∂pn

= 0 :
[
−G(uU

n ) + (1 − pn) P( • )G′(uU
n )

+pnP ( • ) G′(uP
n) + G(uP

n) − k (k′ (pn) − P ( • ))
]

f (n)

+
znhn

n2
P′( • ) + lnP( • ) + gn = 0, ∀n, (28)

gnpn = 0, gn ≥ 0, pn ≥ 0, ∀n, (29)

∂L
∂un

= 0 :
dhn

dn
=

[
(1 − pn) G′(uU

n ) + pnG′(uP
n)

]
f(n) + ln, ∀n, (30)

∂L
∂ l∗

= 0 :
∫ n

n

[
(1−pn)pnP′( • )(G′(uU

n )−G′(uP
n))+kpnP′( • )

]
f(n) dn

+
∫ n

n

[
pnhnzn

n2
P′′( • ) + lnpnP′( • )

]
dn = 0, (31)

∂L
∂un

=
∂L
∂un

= 0 : hn = hn = 0. (32)

Compared to the analysis of Mirrlees there are three new first-
order conditions. Eq. (28) states the optimal monitoring condition,
Eq. (29) state the Kuhn–Tucker conditions for the non-negativity
constraint on pn, and Eq. (31) is the condition for the optimal labor
requirement.

4.1. Optimal wedge on labor

Proposition 2 gives the conditions for optimal income
redistribution.

Proposition 2. The optimal net marginal wedge on labor Wn at each
ability level satisfies:

Wn

1 − Wn
= AnBnCn − Dn, ∀n, (33)

where

An ≡ 1 +
1
en

+ pn
P′( • )
v′( • )

(eP
n − 1), (34)

Bn ≡
∫ n

n (1 − gm)f (m)dm
1 − F(n)

, (35)

Cn ≡ 1 − F(n)
nf (n)

, (36)

Dn ≡ P′( • )
v′( • )

sn, (37)
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sn ≡ (1−pn)pn(G′(uP
n)−G′(uU

n ))
k > 0 is a measure for the welfare cost

of inequality between penalized and unpenalized individuals at ability

level n, en ≡
(

lnv′′(ln)
v′(ln)

)−1
> 0 is the compensated wage elasticity of labor

supply, and gn ≡ (1−pn)G′(uU
n )+pnG′(uP

n)
k > 0 is the average, social marginal

value of income, expressed in money units, for individuals at ability
level n.

Proof. Integrate Eq. (30) using a transversality condition from
Eq. (32). If follows that hn = k

∫ n
n (1 − gm) f (m)dm. Substitute this

result and Eq. (26) in Eq. (27), use Eq. (4), and simplify to obtain the
proposition. �

The An-term is related to the inverse of the efficiency cost of
the labor wedge at income level zn. The second term in An, 1/en, is
the inverse of the labor-supply elasticity and it enters because the
deadweight loss of the wedge increases in the labor-supply elastic-
ity. The third term represents the efficiency gain of monitoring. As
noted before, penalties are useful in separating high- and low-ability
individuals if the elasticity of the penalty function eP is larger than
1. Penalties are more effective if the elasticity increases. The latter
effect is stronger if the monitoring intensity p is larger. Finally, penal-
ties are better at providing work incentives if the marginal penalty
becomes more important relative to the marginal disutility of labor,
P′
v′ . Hence, in comparison to the optimal wedge without monitor-
ing (cf. Diamond,1998; Saez,2001) monitoring reduces the efficiency
cost of taxation provided the elasticity of the penalty function is
larger than 1.

The Bn-term measures the equity gain of an increase in the labor
wedge at income level zn. The first term, 1, captures the revenue gain
of a larger marginal labor wedge at n, such that individuals with an
income level above zn pay one unit of extra income tax. The welfare
loss of extracting one unit of income from the individuals above n is
gm for all individuals m ≥ n. Therefore,

∫ n
n (1 − gm)dF(m) measures

the average redistributional gain of the labor wedge at n . The Bn-
term is not directly affected by monitoring. Since welfare weights
gn are always declining with income, Bn rises with income (see also
Diamond, 1998).

Cn is the inverse relative hazard rate of the skill distribution. Its
numerator is the fraction of the population whose net income is
decreased by increasing the wedge and its denominator captures
the size of the tax base that is distorted by the wedge. Hence,
the numerator in Cn gives weights to average equity gains in Bn

and the denominator to average efficiency losses in An− as in the
Mirrlees (1971) model without monitoring. The numerator of Cn

always declines with income; there are fewer individuals paying the
marginal tax rate if the tax rate is increased at a higher income level.
Hence, for a given Bn the total distributional benefits of raising the
labor wedge fall as the income level rises. For a unimodal skill distri-
bution the denominator of Cn always increases with income before
the mode, since both n and f(n) are rising. Thus, labor wedges always
decrease with income before modal income. After the mode, f(n)
falls, although n continues to rise with income. Hence, it depends on
the empirical distribution of n whether Cn rises or falls with income
after modal income. For most empirical distributions, Cn appears to
rise after the mode and converges to a constant at the top (see also
Diamond, 1998; Saez, 2001; Zoutman et al., 2015).

Finally, Dn measures the welfare loss associated with within-
ability group inequality. Earnings at n decrease if the labor wedge
increases. Therefore, the penalty at n increases, which in turn
increases inequality between monitored and unmonitored individ-
uals. sn measures the marginal welfare cost of this within-ability
group inequality. The effect of a wedge on within-ability group
inequality is increasing in the relative importance of the penalty
function with respect to the marginal disutility of labor (expressed

in monetary units), P′
v′ . Dn increases in the monitoring probabil-

ity for pn < .5 because the within-ability group variance of
utility is increasing in pn for pn < .5. Finally, Dn is increasing in the
concavity of the welfare function, because the difference in welfare
weights between penalized and unpenalized individuals, G′(uP

n)−G′(uU
n )

k ,
is larger if the government is more inequality averse.

We can summarize the impact of monitoring on optimal labor
wedges as follows. Monitoring decreases the efficiency cost of setting
a higher labor wedge, but introduces within-ability group inequality.
Therefore, the total effect of monitoring on the optimal labor wedge
is theoretically ambiguous. Our simulations below demonstrate
that the efficiency gains of monitoring outweigh the distributional
loss due to inequality between monitored and non-monitored
individuals.

We can derive the non-linear tax function, which implements
the second-best allocation as the outcome of decentralized deci-
sion making in a competitive labor market. Substituting Eq. (3) into
Eq. (33) yields:

T ′(zn) + p′(zn)P(l∗ − zn/n) − p(zn)P′(l∗ − zn/n)/n
1 − T ′(zn) − p′(zn)P(l∗ − zn/n) + p(zn)P′(l∗ − zn/n)/n

= AnBnCn − Dn, ∀n. (38)

Thus, when we know the optimal monitoring schedule p(zn),
this equation implicitly defines the optimal non-linear income tax
function T(zn).

4.2. Optimal monitoring

The next proposition derives the optimal monitoring schedule.

Proposition 3. The optimal level of monitoring at each ability level
follows from

k′(pn) + Dn − gnP( • ) ≥
( Wn

1−Wn
+ Dn

An

)
lnP′( • ) ∀n, (39)

where Dn ≡ G(uU
n )−G(uP

n)
k is the welfare difference between a penalized

and an unpenalized individual expressed in money units. If pn > 0, the
equation holds with equality.

Proof. Substitute Eq. (26) into Eq. (28), rearrange terms, employ the
definitions for Bn in Eq. (35) and Cn in Eq. (36), and use the fact that
gn ≥ 0. Finally, substitute Eq. (33) for BnCn to obtain the expression.
By Eq. (29) gn only equals zero if pn > 0 and therefore the equation
holds with equality if pn > 0. �

The first term on the left-hand side in Eq. (39) is the marginal
cost of raising the monitoring intensity. The second and third terms
on the left-hand side jointly represent the welfare effect of a com-
pensated increase in the monitoring probability. That is, the welfare
effect of an increase in the monitoring probability, while keeping
expected utility at skill level n unchanged. The second term repre-
sents the uncompensated, direct welfare loss of an increase in the
monitoring probability. If the monitoring probability increases, there
will be more penalized and less unpenalized individuals. There-
fore, the loss is equal to the welfare difference between penalized
and unpenalized individuals. The third term represents the wel-
fare gain associated with the compensation to keep expected utility
unchanged if the monitoring probability is increased. The compensa-
tion at ability level n requires a transfer of P and its associated welfare
effect is thus given by gnP. In Lemma 2 we derive how the com-
pensated welfare effect of monitoring changes with the monitoring



24 F. Zoutman, B. Jacobs / Journal of Public Economics 135 (2016) 15–31

probability for given levels of utility in monitored and unmonitored
states.

Lemma 2. The compensated welfare effect of the monitoring probabil-
ity Dn − gnP( • ) is decreasing in pn, positive if pn = 0, and negative if
pn = 1 for given levels of utility in penalized and unpenalized states.

Proof. By a first-order Taylor expansion around uU
n we can write Dn

as:

Dn =
G(uU

n ) − G(uP
n)

k
=

G′(uU
n )(uU

n − uP
n)

k
+ R(P) =

G′(uU
n )P
k

+ R(P).

(40)

where R(P) is a second-order remainder term. Similarly, a first-order
Taylor expansion around uP

n yields:

Dn =
G′(uP

n)P
k

− R̂(P), (41)

where R̂(P) is again a second-order remainder term. By concavity of
G both remainder terms are positive for P > 0: R(P), R̂(P) > 0. Now
multiply Eq. (40) with (1 − pn) and Eq. (41) with pn and add them
to find

Dn − gnP = (1 − pn) R(P) − pnR̂(P). (42)

The right-hand side gives the compensated welfare effect of the
monitoring probability, which is, ceteris paribus, decreasing in pn,
always positive if pn = 0, and always negative if pn = 1. �

The right-hand side of Eq. (39) represents the marginal benefits
of monitoring. The benefits of monitoring increase in the marginal
penalty P′( • ), which can be interpreted as the power of the penalty
function. In addition, the marginal benefits of monitoring increase if
labor-supply distortions are larger, i.e., if the labor wedge Wn

1−Wn
is

larger or if the efficiency cost of taxation is larger, as captured by
1/An. The benefits of monitoring also increase in within-ability group
inequality Dn. Intuitively, as more monitoring leads to larger labor
supply, the expected penalty decreases. Hence, monitoring helps to
reduce within-ability group inequality.

Turning back to the optimal monitoring condition, from
Proposition 3 it follows that the government does not engage in mon-
itoring if and only if (evaluated at a no-monitoring equilibrium with
pn = 0):

k′(0) + Dn − gnP( • ) >

( Wn
1−Wn

+ Dn

An

)
lnP′( • ), ∀n. (43)

That is, if the marginal costs of monitoring are higher than the
marginal benefits for all types. By evaluating Proposition 1 at pn = 0
it easily follows that the optimal allocation is the allocation derived
in Mirrlees (1971). Mirrlees (1971) is thus a special case of our model
where monitoring is prohibitively expensive.

4.3. Optimal work requirement

The next proposition derives the optimal work requirement l∗.

Proposition 4. The optimal work requirement l∗ is implicitly deter-
mined by:

∫
P
snf(n) dn =

∫
P

( Wn
1−Wn

+ Dn

An
pne

P
n

)
f(n) dn, (44)

where P is the set of ability levels n where hours worked are smaller
than the work requirement: P ≡ {

n ∈ [n, n] : l∗ < ln
}

.

Proof. Substitute Eq. (26) into Eq. (31), divide by k, use
sn ≡ (1−pn)pn(G′(uP

n)−G′(uU
n ))

k > 0 to find

∫ n

n
snP′( • ) f(n) dn =

∫ n

n

hn/k

nf (n)
pnP′′( • )lnf (n)dn. (45)

Use hn/k =
∫ n

n (1 − gm) f (m)dm, employ the definitions for Bn

and Cn and substitute Eq. (33) for BnCn to obtain the expres-
sion. For ability levels where ln > l∗ the penalty function, as
well as its first and second derivatives, equal zero: P(l∗ − ln)
= P′(l∗ − ln) = P′ ′(l∗ − ln) = 0. It follows that for those ability levels
all terms equal zero and the integral

∫ n
n can be replaced by

∫
P . In

subdomain P , we have ln ≥ l∗, and hence, the marginal penalty is
strictly positive, so that P′(l∗ − ln) > 0. Therefore, we can divide both
sides by P′(l∗ − ln), and substitute eP

n ≡ P′′(l∗−ln)ln
P′(l∗−ln) on the right-hand

side. �

The left-hand side of Eq. (44) represents the marginal welfare
cost of increasing the work requirement l∗. A marginal increase
in the work requirement — ceteris paribus — increases the penalty
provided to monitored individuals, resulting in an increase in within-
ability group inequality. This is represented by the marginal welfare
cost of within-ability group inequality sn. If the government would
care little for within-ability group inequality, the minimum-work
requirement l∗ would be set at high levels.

The right-hand side of Eq. (44) provides the marginal welfare
gain of increasing the work requirement l∗. A marginal increase in
the work requirement decreases the burden of taxation, since it
increases the incentive to work. This effect is stronger if the penalty
function is more effective to boost labor supply (i.e., eP

n is larger),
and if more individuals are monitored (i.e., pn is larger). Moreover,
the welfare gain is larger if labor-supply distortions are larger. These
distortions increase in the labor wedge Wn

1−Wn
, and the efficiency

cost of taxation 1/An. Additionally, increasing the work requirement
induces individuals to work harder, which reduces their expected
penalty, and hence, within-group inequality, as captured by Dn.
The work requirement thus serves to enhance the efficiency of the
income tax.

If at a given ability level n, individuals work more than the work
requirement, i.e., ln > l∗, the penalty, the marginal penalty, and the
change in the marginal penalty are all zero, i.e., P( • ) = P′( • ) =
P′ ′( • ) = 0. Hence, for these individuals there are neither costs nor
benefits from setting a marginally higher work requirement l∗. Con-
sequently, Eq. (44) sums marginal costs and the marginal benefits
of raising the labor requirement l∗ only for those individuals whose
work requirement is binding (P′( • ) > 0).

4.4. Boundary results

In the next Proposition we derive the optimal wedge and
monitoring probability at the bottom and the top of the ability
distribution.15

Proposition 5. If the income distribution is bounded at the top,
n < ∞, the optimal wedge and monitoring probabilities at the bounds
of the ability distribution are:

Wn = Wn = pn = pn = 0. (46)

15 Due to the absence of income effects in labor supply, bunching at zero labor
earnings is not an issue in deriving the boundary results(see also Seade, 1977).
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If non-distorted labor supply at the endpoints is above the work
requirement l∗, then the penalties are zero at the end-points, and
marginal tax rates are also zero at the endpoints:

T ′(zn) = T ′(zn) = 0. (47)

Proof. From Eq. (33) follows that
(

Wn
1−Wn

+ Dn

)
/An = BnCn. The

transversality conditions (Eq. (32)) imply BnCn = BnCn = 0. At
the extremes, the optimal monitoring condition (Eq. (39)), therefore
simplifies to Dn−gnP+k′(pn) ≥ 0. Evaluate this expression at pn = 0:

Dn − gnP + k′(0) = R(P) + k′(0) ≥ 0, (48)

where R(P) > 0 is a second-order remainder term, and the second
step follows from Lemma 2. The condition is always satisfied at
pn = 0. Hence, pn = 0 is optimal at the extremes. The optimal
wedges in Eq. (33) at the extremes are zero, because the product BnCn

is zero by the transversality conditions, and Dn is zero, since pn = 0.
When the wedge is zero, labor supply is at its non-distorted level.
Therefore, if the work requirement l∗ is lower than non-distorted labor
supply, it follows that P( • ) = 0 at the endpoints. In that case, using
pn = P( • ) = 0 in Eq. (4) demonstrates that Wn = Wn = T ′(zn) =
T ′(zn) = 0. �

Proposition 4 establishes that the optimal zero wedge at the bot-
tom and top of the model without monitoring carries over to the
model with monitoring (Sadka,1976; Seade,1977). Intuitively, the
wedge at n redistributes income from individuals above n to the
government, and, hence indirectly to individuals below n. There are
no individuals above n− and no individuals below n. Therefore, there
are no benefits associated to a positive wedge at these points of
the ability distribution. However, the wedge does distort the labor-
supply decision. Hence, the optimal wedge must be zero. Because the
wedge is zero, there is no efficiency gain from monitoring. As a result,
the optimal monitoring probability is also zero.

However, marginal tax rates at the endpoints do not necessarily
need to be zero. This critically depends on the penalty function and
the optimal work requirement l∗. In particular, if the work require-
ment l∗ is larger than non-distorted labor supply, the marginal
monitoring probability is non-zero at the end-points (p′(zn) �= 0)
and the expected penalty is positive. In that case, marginal tax rates
at the endpoints have to be non-zero in order to compensate for the
distortion caused by the change in monitoring intensity. In particu-
lar, marginal tax rates at the endpoints should be positive (negative)
if p′(zn)P( • ) < 0 (> 0). Marginal penalties and tax rates at the end-
points are zero only if non-distorted labor supply at the end-points
is higher than the work requirement l∗, so that (marginal) penalties
are zero.

5. Simulations

In this section we use numerical simulations to establish the
shape of the optimal tax and monitoring schedules. The simulations
require four main ingredients: the ability distribution, the individual
preferences, the social preferences, and the monitoring technology.
First, we use the skill distribution from Mankiw et al. (2009). The
hourly wage is used as a proxy for earning ability. We follow Mankiw
et al. (2009) by assuming that wage rates follow a log-normal dis-
tribution, which is extended with a Pareto-distribution for the top
tail of the wage distribution. In addition, we assume that 5% of indi-
viduals are disabled and have zero earning ability (n = 0), which is
also based on Mankiw et al. (2009) . The earnings distribution is esti-
mated from March 2007 CPS data. This resulted in a mean log-ability
of m = 2.76 and a standard deviation of log ability of s = 0.56.

The Pareto-tail starts at the top 1% of the earning distribution and
features a Pareto-parameter of a = 2. The latter is in accordance
with estimates of Saez (2001).

Second, a description of individual preferences is needed. We
assume the following utility function:

u(cn, ln) = cn + c
(1 − ln)1−1/e

1 − 1/e
, c, e > 0, (49)

where e is the (un)compensated elasticity of leisure demand with
respect to the net marginal wage rate. The elasticity of taxable
income of individual n equals e(1 − ln)/ln. Labor supply ln generally
increases in individual earning ability. Hence, high-ability types are
more likely to satisfy the work requirement l∗, which is in accor-
dance with empirical evidence that high-ability types supply more
labor. Labor supply is bounded above at 1 by the Inada-conditions
on utility. Therefore, it is theoretically possible to have a binding
minimum-hours requirement l∗ for all individuals by simply setting
l∗ = 1 for all n.16 We follow the empirical literature estimating the
elasticity of taxable income and calibrated the elasticity of taxable
income at 0.25 (see, e.g., Saez et al., 2012). To that end, we assumed
e = 0.25 and we calibrated average labor supply at l = 0.5 in the
baseline.17

The third ingredient is the social welfare function. We assume
an Atkinson social welfare function featuring a constant elasticity of
relative inequality aversion b:

G(un) =
u1−b

n

1 − b
, b ≥ 0, b �= 1,

G(un) = ln(un), b = 1. (50)

The utilitarian objective is obtained by assuming b = 0. A
Rawlsian social welfare function results if b → ∞. The baseline
assumes a moderately redistributive government with b = 0.99 ≈ 1.
In the robustness analysis we also consider less redistributive
governments (b = 0.25) and more redistributive governments
(b = 2).

Finally, we need to make specific assumptions on the monitor-
ing technology and the penalty function. Unfortunately, no empirical
evidence is available that guides us to calibrate these functions. How-
ever, our theoretical model provides some restrictions on the choice
of the functions. Also, we perform robustness checks on the parame-
ter choices we have made for these functions. The cost of monitoring
should be increasing and convex in the monitoring intensity p. We
assume that the cost of monitoring is quadratic:

k(pn) =
j

2
p2

n , j > 0, (51)

where j is a cost parameter indicating the marginal cost of a higher
monitoring probability. In the baseline we assume j = 1. In the
robustness analysis we vary j between 0.5 and 2. We provide eco-
nomic justification for these parameter values by showing that the
change in the monitoring probability induced by the different val-
ues of j is relatively large. In addition, we show that total monitoring
costs in our calibration are a small, but significant and plausible
fraction of total income earned in the economy.

16 We prefer our specification over the utility function used by Diamond (1998) (i.e.,
u(cn , ln) = cn −cl1+1/e

n /(1+1/e), c, e> 0), since labor supply is potentially unbounded
in the latter specification. This is implausible empirically and gives rise to numerical
complications.
17 The working paper version of this paper simulated the model with a slightly

different utility function and an exogenous work requirement. The results do not
substantively differ from the ones reported here (see also Zoutman and Jacobs, 2014).
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Table 1
Calibration for simulations.

Parameter Description Base value High value Low value

m Mean log ability 2.76 N/A N/A
s Standard deviation log ability 0.56 N/A N/A
a Pareto-parameter 2.00 N/A N/A
d Fraction of disabled individuals 0.05 N/A N/A
e Compensated elasticity 0.25 N/A N/A
r Government revenue as fraction of GDP 0.10 N/A N/A
j Cost of monitoring 1.00 2.00 0.50
p Penalty parameter 3.50 4.50 2.50
b Relative inequality aversion 1.00 2.00 0.25

We assume that the penalty function is quadratic in labor hours
ln and is given by:18

P =
p
2

(
max

{
0, l∗ − ln

})2, p > 0, (52)

where p is a parameter determining the severity of the penalty. The
penalty is a function of the reference level of labor hours l∗. If individ-
uals work less than the reference level they are subject to a penalty
when monitored, and increasingly so if their hours worked deviate
more from the reference level of hours. When the work requirement
is binding, monitoring is effective in boosting labor supply. In the
baseline we set p = 3.5. In the robustness checks we employ values
of p = 2.5 and p = 4.5.

The government-revenue requirement is exogenous and set to
10% of labor earnings in the baseline specification without monitor-
ing, following Tuomala (1984) and Zoutman et al. (2015). The choices
for all the parameters can be found in Table 1.

In the table, the first column on the right-hand side gives the
base value of the parameter. In addition, we perform robustness
checks with high and low parameter values for the welfare func-
tion, all parameters of the penalty function, and all parameters of the
monitoring technology.19

5.1. Results

Fig. 2 gives the optimal wedge, tax and monitoring schedules as a
function of yearly income in US dollars. The fat solid line represents
the optimal tax schedule with monitoring. The dashed line is the
optimal tax schedule without monitoring. The circled line is the opti-
mal total labor wedge with monitoring. And, the thin solid line is the
optimal monitoring schedule. Recall that the optimal tax schedule
coincides with the optimal labor wedge if there is no monitoring.

As can be seen, the optimal labor wedge follows a U-shape both
with and without monitoring. Marginal wedges are extremely large
at the bottom of the labor market, relatively small for middle-income
levels, and somewhat higher at the top. The shape of these schedules
is largely explained by the Bn and Cn terms in Eq. (33). The Bn-term
increases with income as the welfare loss of taxing away one unit of
income unit from individuals above zn decreases in zn (see our previ-
ous discussion). The Cn-term follows a U-shape. At the bottom of the
earning distribution, the density of tax payers is small, and hence,
efficiency costs of marginal taxes are low. In addition, the redistri-
butional benefits of a higher marginal tax rate are large as it is paid

18 Note that with this specification of the penalty function the elasticity eP is not
unambiguously larger than 1 so that violations of second-order conditions might occur
(see Lemma 1). However, in none of our reported simulations is this the case.
19 The numerical procedure we use to solve for the optimal allocation is a so-called

shooting method. We solve the differential Eqs. (13) and (30) numerically for given
initial values hn , un , and k. Subsequently, we ‘shoot’ for initial values until we meet
boundary Conditions (12) and (32). The wedge, tax, and monitoring schedule can be
found using Eq. (38). A more detailed explanation of the numerical procedure can be
found in the Simulation algorithm in the Appendix.

by almost the entire population. Towards middle-income levels, the
efficiency cost increases as the population density increases, whereas
the redistributive benefits decrease as fewer individuals are paying a
higher tax rate. After modal income, marginal tax distortions decline
more rapidly than distributional benefits of marginal taxes, hence
marginal taxes increase. These results are entirely in line with previ-
ous simulations performed in e.g., Saez (2001), Brewer et al. (2010),
and Zoutman et al. (2015).

The effect of monitoring on the labor wedge is theoretically
ambiguous as we derived in the previous section. However, in our
simulations we see that the efficiency gain of monitoring in reducing
labor distortions outweighs the distributional cost of raising within-
skill group inequality. The optimal monitoring schedule also follows
a U-shape.

Table 2 reports the optimal labor requirements under the dif-
ferent scenarios we consider in our simulations. The optimal labor
requirement equals 0.94 in the baseline scenario, which is close to
the maximum amount of labor that individuals can supply under
our utility function. Therefore, the work requirement is binding for
all individuals in the baseline, and monitoring is effective in boost-
ing labor supply at all income levels. Hence, the optimal monitoring
intensity is always positive.

The labor wedge determines the shape of the monitoring
schedule, see also Eq. (39) in Proposition 3. The monitoring intensity
decreases very steeply at the bottom of the income distribution. This
gives individuals a strong incentive to increase their labor supply. At
middle-income levels the monitoring intensity is relatively low. The
monitoring intensity increases towards top-incomes. However, the
effect of monitoring on the labor wedge and the tax schedule is very
small at these high income levels.

The optimal tax schedule exhibits extremely large tax rates at
the bottom of the earning distribution. Indeed, the government
can levy tax rates above 100% at the lowest income earners. The
sharp decrease in the monitoring intensity works as an implicit sub-
sidy on labor supply and partially offsets the high explicit tax on
labor supply. The poverty trap found in many countries (see, e.g.,
Spadaro,2005, Brewer et al.,2010 and OECD,2011) can thus be opti-
mal in the presence of monitoring. Indeed, there may not be a
poverty trap if the monitoring schedule provides sufficient incen-
tives, even if the tax-benefit system itself does not provide incentives
to supply labor.

Note that the optimal wedge at the top does not equal zero, as
was derived in Proposition 5 for a bounded income distribution.
Mirrlees (1971), Diamond (1998), and Saez (2001) show theoreti-
cally that the optimal wedge converges to a constant if the right
tail of the ability distribution is Pareto distributed. In the Pareto tail
of the earning distribution, the ratio of marginal distributional ben-
efits and marginal efficiency costs of taxes becomes constant, and
the tax wedge converges to a constant. Our simulations confirm that
this result holds as well in the model with monitoring. However, the
monitoring probability does converge to zero. With our utility func-
tion, labor supply converges to 1 when ability approaches infinity.
Since the optimal work requirement l∗ is smaller than 1, monitoring
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Fig. 2. The optimal wedge, tax and monitoring schedules in the baseline scenario. Baseline parameter values of the model can be found in Table 1.

at very high income levels no longer affects the incentive to work.
Hence, there will be no more monitoring. It is difficult to observe the
decrease in the monitoring intensity at top income levels in Fig. 2,
since labor supply converges only slowly to 1.

5.2. Sensitivity analysis

In this subsection we present the sensitivity analysis of the results
obtained in the previous subsection. We especially explore the sen-
sitivity of our simulation outcomes with respect to the monitoring
technology and the penalty function.

Fig. 3 summarizes the simulations when the cost of monitor-
ing is decreased (j = 0.5) or increased (j = 2). As expected, the
monitoring schedule moves up if the monitoring cost decreases and
down if the cost increases. In addition, in the high-cost scenario
the monitoring schedule no longer has a U-shape, since the govern-
ment no longer monitors individuals with an income above 30,000
dollars. The reason is that the monitoring intensity decreases when
monitoring costs increase. As a result, the government optimally
reduces the work requirement when monitoring costs increase to
l∗ = 0.66, as can be seen from Table 2. Intuitively, the marginal ben-
efits of the work requirement increase in the monitoring intensity
(see the right-hand side of Eq. (44)). When the work requirement is
no longer binding at middle- and high-income levels, it is not optimal
to monitor labor effort at these income levels.

The optimal tax schedule largely remains unaffected. From the
optimal tax expression in Eq. (38) we can infer that monitoring
increases the optimal tax rate if the allocation remains unchanged.
However, the allocation changes, since an increase in the monitoring
probability increases revenue from taxation for any given tax rate.
Therefore, the redistributive benefit of a marginal tax decreases at
the same time. In our simulations, these two effects roughly cancel
out and the optimal tax rates remain largely unaffected.

Table 2
Optimal work requirements.

l∗

Base scenario 0.94
Low monitoring cost 0.98
High monitoring cost 0.66
Low penalty 0.94
High penalty 0.88
Low inequality aversion 0.50
High inequality aversion 0.91

Fig. 4 shows the optimal tax and monitoring schedules when the
penalty parameter is decreased (p = 2.5) or increased (p = 4.5). As
can be seen, the differences in both the optimal monitoring and tax
schedules with the baseline are minor. From the optimal tax formula
in Eq. ( 33) it follows that an increase in the penalty parameter affects
the optimal tax rate through seven channels. First, an increase in the
marginal penalty raises the marginal tax rate for a given wedge.
Second, an increase in the penalty itself may increase or decrease
the optimal marginal tax rate for a given labor wedge depending on
the sign of p′(zn). Third, an increase in the convexity of the penalty
function decreases the efficiency cost of a wedge. Fourth, the penalty
affects the monitoring probability, although the effect is ambigu-
ous. Fifth, an increase in the penalty increases within-ability group
inequality, which decreases the optimal wedge. Sixth, the allocation
itself is affected, but it is a priori unclear whether higher penalties
lead to more or less redistribution. Seventh, an increase the penalty
parameter may either increase or decrease the labor requirement,
as both the benefits and the cost of the higher labor requirement
increase. The simulation outcomes confirm these theoretical ambi-
guities, and show that the seven effects roughly cancel out along the
entire income distribution.

Finally, in Fig. 5 we simulate the optimal tax and monitoring
schedules for a higher degree of inequality aversion (b = 2) and
a lower degree (b = 0.25) of inequality aversion. As can be seen,
the optimal tax rate increases in inequality aversion as should be
expected, although at the bottom of the income distribution the
difference is small. Intuitively, monitoring decreases the distortion of
a higher tax rate, but it also creates within skill-group inequality. The
poorest individuals in society are the low-income individuals who
are penalized. Hence, within-ability group inequality is particularly
costly if the government is strongly inequality-averse. For very low
levels of income, the optimal monitoring intensity decreases, both
when inequality aversion increases, and when inequality aversion
decreases. At higher levels of income, within-skill group inequality
aversion is less important, and the monitoring intensity unambigu-
ously increases with inequality aversion as labor wedges are set
higher when redistributive desires are stronger.

The optimal work requirement decreases (increases) when
inequality aversion increases (decreases) (see Table 2). The effect
of inequality aversion on the optimal labor requirement is ambigu-
ous. On the one hand, an increase in inequality aversion increases
the social cost of within-ability group inequality, which reduces
the optimal work requirement, cf. the left-hand side of Eq. (44).
On the other hand, an increase in inequality aversion increases the
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Fig. 3. Optimal tax and monitoring schedules for high (j = 2) and low (j = 0.5) marginal costs of monitoring. All other parameters take baseline values (see Table 1).

optimal labor wedge, which raises the optimal work requirement,
cf. the right-hand side of Eq. (44). In our simulations, the first effect
dominates the second effect when inequality aversion increases,
and vice versa when inequality aversion decreases. Interestingly,
the decrease in the work requirement is very large when inequal-
ity aversion decreases. As a result, the government only monitors
individuals with very low incomes and the work requirement is no
longer binding at higher income levels.

5.3. Allocations and welfare

Clearly, monitoring is part of the optimal redistributive tax-
benefit system. But, how important is monitoring for the optimal
second-best allocation and welfare? Table 3 reports the average
monitoring cost k/z, the average penalty P/z , the penalty for the
lowest working individual, P(n)/z, the transfer paid out to individuals

having zero earnings, −T(0)/z, and the change in average earn-
ings, Dz/z. All table entries are denoted in percentages of average
earnings.

The first column shows that the average monitoring cost k/z is
relatively small: about 0.77% of average earnings in the baseline.
An increase in the marginal cost of monitoring actually decreases
total monitoring costs. The increase in marginal monitoring costs is
accompanied by a strong decrease in the optimal monitoring inten-
sity. Monitoring costs decrease slightly when the penalty parameter
decreases, since the government relies less on monitoring when
penalties are lower. However, monitoring costs are very sensitive
with respect to inequality aversion, since a more inequality-averse
government relies more heavily on monitoring to alleviate the
equity-efficiency trade-off.

The second column represents the average penalty given to mon-
itored individuals as a percentage of average labor earnings P/z. As
can be seen, penalties are relatively small throughout all simula-
tions. In the baseline, the average penalty equals 1.4% of average
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Fig. 4. Optimal tax and monitoring schedules for strong (p = 4.5) and weak (p = 2.5) penalties. All other parameters take baseline values (see Table 1).
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Fig. 5. The tax and monitoring schedule for a higher (b = 2) and a lower (b = 0.25) degree of inequality aversion. All other parameters take baseline values (see Table 1).

earnings. Penalties decrease with the monitoring cost, as the labor
requirement declines when monitoring costs increase. As expected,
penalties decrease when the penalty parameter decreases. How-
ever, average penalties also decrease when the penalty parameter
increases, since the optimal labor requirement declines. The penalty
increases (decreases) with stronger (weaker) inequality aversion,
since a more (less) inequality-averse government optimally sets
higher (lower) labor wedges.

The third column gives the average penalty at the bottom of the
earning distribution P(n)/z. Penalties at the bottom are relatively
large, because the wedge at the bottom is large. The comparative-
static effects of the penalty at the bottom are similar to the compar-
ative statics of the average penalty.

The fourth column shows the transfer as a fraction of average
earnings, −T(0)/z, and the fifth column shows the change in aver-
age labor earnings Dz/z in comparison to the optimal tax system
without monitoring. In almost all simulations, both the transfer and
average labor earning increase, indicating an improvement in both
equity and efficiency of the tax-transfer system. As expected, this
effect decreases in the cost of monitoring. However, the increase
in both the transfer and the monitoring cost remains substantial
even when monitoring cost are large. These outcomes are largely
explained by the fact that monitoring is most effective at the bot-
tom of the skill distribution. At low end of the earning distribution,
monitoring costs are relatively unimportant, since the density of
monitored individuals is low.

The allocation is quite sensitive to the size of the penalty, despite
the fact that the change in the penalty parameter does not have

Table 3
Change in allocation due to monitoring. (All numbers are in percentages of average
earnings).

k
z

P
z

P(n)
z

−T(0)
z

Dz
z

No monitoring 0.00 0.00 0.00 35.74 0.00
Base scenario 0.77 1.40 10.77 49.33 1.29
Low monitoring cost 0.76 1.65 11.12 50.32 1.48
High monitoring cost 0.24 0.08 7.19 44.79 1.17
Low penalty 0.64 1.04 8.99 46.11 0.90
High penalty 0.76 1.12 11.14 50.64 1.60
Low inequality aversion 0.03 0.02 6.49 37.25 5.84
High inequality aversion 0.95 1.25 9.45 50.66 −0.81

Note: z is per capita labor income in the specified calibration, k is the per capita moni-
toring cost, P is the average penalty over the monitored population, P(n) is the penalty
at the lowest skill level, −T(0) is the transfer and Dz is the change in average labor
earnings as compared to the model without monitoring.

a large impact on optimal tax and monitoring schedules. Intu-
itively, when the penalty parameter increases the government opti-
mally reduces the labor requirement, which leaves average penal-
ties approximately unchanged. The average marginal penalty thus
increases, since the penalty function is quadratic. As a result, a larger
penalty is more effective in reducing labor-supply distortions. Even
if the government does not alter the tax and monitoring schedules,
both equity and efficiency increase. Finally, a change in inequality
aversion changes the weight given to either equity (higher transfers
T(0)) or efficiency (higher average labor earnings z). Remarkably, the
optimal transfer increases compared to the case without monitoring
even in our scenario with low inequality aversion, where average tax
rates decrease significantly, and monitoring only occurs at the very
bottom of the income distribution. However, in the scenario with
large inequality aversion average labor earnings decrease slightly.

Finally, Table 4 reports the welfare effects of monitoring. The first
column represents the income-weighted average of the marginal
deadweight loss of increasing the marginal tax rate by 1%. As can be
seen, monitoring decreases the marginal deadweight loss by about
1% in our baseline simulation from 0.28 to 0.26. This result is robust
across all our sensitivity analyses. The last column reports the mon-
etized welfare gain of monitoring. We compute the compensating
variation by calculating the amount of resources that have to be
injected into an economy without monitoring in order to attain the
same social welfare as the economy with optimal monitoring. In our
baseline scenario, the welfare gain is about 2.8% of average labor
earnings, i.e., 2.8% of total output. The welfare gain increases if the
cost of monitoring is lower and if penalties are higher. Also, an

Table 4
Welfare effects of monitoring.

Marginal dead weight loss Welfare gain

No monitoring 0.28 0.00
Base scenario 0.26 2.78
Low monitoring cost 0.26 2.86
High monitoring cost 0.27 1.72
Low penalty 0.27 0.89
High penalty 0.26 2.89
Low inequality aversion 0.16 0.70
High inequality aversion 0.30 3.01

Note: The marginal deadweight loss refers to the income-weighted average of the
marginal deadweight loss of all households as a consequence of increasing the
labor wedge on labor one percentby 1%. Welfare gains are obtained by calculat-
ing the compensating variation as a percentage of average earnings in the specified
simulation.
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increase in inequality aversion increases the welfare gain of mon-
itoring, because the efficiency gain of monitoring is increasing in
the optimal labor wedges, which are larger when the government
is more inequality averse. We find quantitatively substantial social
welfare gains of monitoring in all scenarios.

6. Conclusions

In this paper we demonstrate that redistributive governments
should optimally monitor labor hours in order to redistribute income
at the lowest efficiency cost. Monitoring of labor supply alleviates
the equity-efficiency trade-off and raises equity, efficiency, or both.
The reason is that distortions from redistribution derive from the
informational problem that earning ability is private information.
By using a monitoring technology this informational asymmetry is
reduced. A first-best outcome cannot be reached, however, because
monitoring is costly. Mirrlees (1971) is a special case of our model
when monitoring is prohibitively costly.

We demonstrated that monitoring labor supply works as an
implicit subsidy on labor supply, which partially offsets the explicit
tax on labor supply. We derived conditions on the desirability of
monitoring and demonstrated that the optimal non-linear monitor-
ing schedule generally follows the optimal labor wedge. Monitoring
is more desirable when redistributive taxation creates larger distor-
tions in labor supply. Moreover, optimal labor taxes can optimally
be above 100% when monitoring is allowed for. At the endpoints of
the earnings distribution labor wedges — including taxes and the
implicit subsidy on work due to monitoring — are zero in the absence
of bunching and with a finite skill level.

Simulations confirmed that the optimal monitoring intensity fea-
tures a U-shaped pattern with income; very high at the lower
end of the earnings distribution, declining towards the middle-
income groups, increasing again towards the high-income groups,
and becoming constant at the top-income groups. Our simulations
demonstrated that marginal tax rates will be higher if the govern-
ment monitors labor supply, while the labor wedges — including
the explicit tax and implicit subsidy of monitoring — decreases.
Indeed, monitoring is very effective to alleviate the equity efficiency
trade-off.

In practice, monitoring is not infinitely costly as in Mirrlees
(1971). By allowing for a monitoring technology we can explain
why work-dependent tax credits for low-income earners, that are
employed in the UK, Ireland and New Zealand, are part of an optimal
redistributive tax policy. Our findings also show that sanctions for
welfare recipients, bonuses for low-income workers, and extensive
monitoring of labor effort or working ability of low-earning individ-
uals are especially desirable in more generous welfare states. More-
over, we can also explain why (large) penalties on hours worked
(or high bonuses on hours worked) are more desirable when the
government desires to redistribute more income. Finally, we find
that marginal tax rates higher than 100% at the lower end of the
earnings distribution, as commonly observed in many countries, can
be optimal in the presence of monitoring of labor supply.

In future research, monitoring technologies to verify hidden
behaviors of tax payers may be fruitfully applied in other areas of
optimal taxation. For example, one can study optimal income tax-
ation and minimum wages as in e.g., Boadway and Cuff (2001). A
monitoring technology would allow the government to verify wage
rates per hour worked, which is needed to enforce a minimum-
wage policy. Similarly, our analysis may be applied to models with
an extensive labor-supply margin. Then, the monitoring technology
might allow the government to monitor participation costs, rather
than wage rates. Doing so alleviates the trade-off between equity
and participation distortions. Our analysis could also be applied to
generalize the study of Cremer and Gahvari (1996) to allow for a

continuum of skill types and study the consequences of tax evasion
for the setting of optimal non-linear taxes and non-linear monitoring
probabilities.

Appendix A. Simulation algorithm

The algorithm we use to solve for the optimal allocation con-
sists of two steps. First, we find the optimal allocation using a
shooting method. Second, we calculate the implied wedge, tax, and
monitoring schedules.20

A.1. Finding the optimal allocation

We find the optimal allocation through five nested loops:

1. The first loop chooses the labor requirement l∗ that maximizes
social welfare.

2. The second loop solves the resource constraint (Eq. (12)) for k.
A higher value of k implies a higher shadow value of resources,
and thus, a lower resource deficit, and vice versa. Therefore, we
can satisfy the resource constraint arbitrarily by altering the
value of k.

3. The third loop solves the transversality condition at the top
(Eq. (32)) for a given utility level at the bottom un, and k. The
most important determinant in un is the transfer implied by
T(0). Therefore, one can think of this procedure as finding the
intercept of the tax function T(0). If the intercept is too low, the
distortion at the top has to be positive to finance the transfer,
and vice versa if the intercept is set too high. As a consequence,
by varying the transfer T(0) we can satisfy the transversality
condition arbitrarily closely.

4. The fourth loop solves the differential Eqs. (13) and (30) for
given un, k, and hn using a Runge–Kutta method to integrate
over n.

5. The fifth loop maximizes the Lagrangian (Eq. (25)) with respect
to pn and zn for a given state un and costate variable hn at each
n.

The above algorithm is known as a shooting method because it
shoots for the initial values of the differential equations that satisfy
the boundary condition.

A.2. Finding the optimal wedge, tax, and monitoring schedules

The above algorithm gives us a numerical approximation of the
allocation {un, hn, zn,pn} at each n. p′(zn) can be approximated by
taking the first difference:

p′(zn) ≈ Dpn

Dzn
. (53)

With p′(zn) we have all the information we need to find the
optimal tax schedule using Eq. (38).
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